Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:26:37.283Z Has data issue: false hasContentIssue false

10 - Therapeutic uses of rTMS

Published online by Cambridge University Press:  12 August 2009

Chip M. Epstein
Affiliation:
Department of Neurology, Emoy Clinic, Atlanta, GA, USA
John C. Rothwell
Affiliation:
Sobell Department, Institute of Neurology, London, UK
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Introduction

The basic rationale for attempting to use rTMS as a therapeutic tool is that it is known to produce effects on cerebral cortex that outlast the stimulus. The assumption is that, in some cases, it may be possible to manipulate these long-term effects either to reverse the pathological processes responsible for the condition, or to change the excitability of remaining healthy systems so that they can compensate for the underlying disturbance. In this chapter we will consider the use of rTMS in psychiatric conditions and in movement disorders. However, before discussing clinical details, we consider the available data about the long-term effects of rTMS in healthy subjects from the standpoint of designing therapeutic trials on patients. In particular, we ask first whether rTMS can ever be targeted accurately enough at specific neural populations to achieve a therapeutic effect and, second, whether the effects it produces will last long enough to be used as a clinical treatment.

Effect on neural circuits, local

Most of our knowledge about the actions of rTMS comes from studies of the motor cortex, although a smaller number of investigations suggest that the basic principles may apply to visual (Boorojerdi et al., 2000) or frontal (Speer et al., 2000) cortex. As summarized in previous chapters, much of this work has described the effects of rTMS in terms of the excitability of the corticospinal output to single pulse TMS.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 246 - 263
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahern, G. L. & Schwartz, G. E. (1985). Differential lateralization for positive and negative emotion in the human brain, EEG spectral analysis. Neuropsychologia, 23: 745–755CrossRefGoogle ScholarPubMed
Baker, S. C., Frith, C. D. & Dolan, R. J. (1997). The interaction between mood and cognitive function studied with PET. Psychol. Med., 27: 565–578CrossRefGoogle ScholarPubMed
Baxter, L. R. J., Schwartz, J. M., Phelps, M. E.. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry, 46: 243–250CrossRefGoogle Scholar
Ben-Shachar, D., Belmaker, R. H., Grisaru, N. & Klein, E. (1997). Transcranial magnetic stimulation induces alterations in brain monoamines. J. Neural. Transmiss., 104: 191–197CrossRefGoogle ScholarPubMed
Bench, C. J., Friston, K. J., Brown, R. G., Scott, L. C., Frackowiak, R. S. & Dolan, R. J. (1994). The anatomy of melancholia – focal abnormalities of cerebral blood flow in major depression. Psychol. Med., 22: 607–615CrossRefGoogle Scholar
Bench, C. J., Frackowiak, R. S. & Dolan, R. J. (1995). Changes in regional cerebral blood flow on recovery from depression. Psychol. Med., 25: 247–261CrossRefGoogle Scholar
Berman, R. M., Narasimhan, M., Sanacora, G.. (2000). A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. Biol. Psychiatry, 47: 332–337CrossRefGoogle ScholarPubMed
Boroojerdi, B., Prager, A., Muellbacher, W. & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1 Hz transcranial magnetic stimulation. Neurology, 54: 1529–1531CrossRefGoogle ScholarPubMed
Boroojerdi, B., Ziemann, U., Chen, R., Butefisch, C. M. & Cohen, L. G. (2001). Mechanisms underlying motor cortex plasticity. Muscle Nerve, 24: 602–613CrossRefGoogle Scholar
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Christianson, S. A., Saisa, J., Garvill, J. & Silfvenius, H. (1993). Hemisphere inactivation and mood-state changes. Brain Cogni., 23: 127–144CrossRefGoogle ScholarPubMed
Cohen, D. & Cuffin, B. N. (1991). Developing a more focal magnetic stimulator. Part I, Some basic principles. J. Clin. Neurophysiol., 8: 102–111CrossRefGoogle ScholarPubMed
Cunnington, R., Iansek, R., Thickbroom, G. W.. (1996). Effect of magnetic stimulation over the supplementary motor area on movements in Parkinson's disease. Brain, 119: 815–822CrossRefGoogle ScholarPubMed
d'Alfonso, A. A. L., Aleman, A., Kessels, R. P. C.. (2002). Transcranial magnetic stimulation of left auditory cortex in patients with schizophrenia, effects on hallucinations and neurocognition. J. Neuropsych. Clin. Neurosci. (in press)CrossRefGoogle ScholarPubMed
Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain Cogn., 20: 125–151CrossRefGoogle ScholarPubMed
Elliott, R., Baker, S. C., Rogers, R. D.. (1997). Prefrontal dysfunction in depressed patients performing a complex planning task, a study using positron emission tomography. Psychol. Med., 27: 931–942CrossRefGoogle ScholarPubMed
Epstein, C., Figiel, G. S., McDonald, W. M., Amazon-Leece, J. & Figiel, L. (1998). Rapid-rate transcranial magnetic stimulation in young and middle-aged refractory depressed patients. Psychiat. Ann., 28: 36–39CrossRefGoogle Scholar
Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G. & Marsden, C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol., 453, 525–546CrossRefGoogle ScholarPubMed
Fleischmann, A., Sternheim, A., Etgen, A. M., Li, C., Grisaru, N. & Belmaker, R. H. (1996). Transcranial magnetic stimulation downregulates beta-adrenoreceptors in rat cortex. J. Neural. Transmiss., 103: 1361–1366CrossRefGoogle ScholarPubMed
Fleminger, S. (1991). Left-sided Parkinson's disease is associated with greater anxiety and depression. Psychol. Med., 21: 629–638CrossRefGoogle ScholarPubMed
Fox, P., Ingham, R., George, M. S.. (1997). Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport, 8: 2787–2891CrossRefGoogle ScholarPubMed
Fujiki, M. & Steward, O. (1997). High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Mol. Brain Res., 44: 301–308CrossRefGoogle ScholarPubMed
George, M. S. & Wasserman, E. M. (1994). Rapid-rate transcranial magnetic stimulation and ECT. Convuls. Ther., 10: 251–254Google ScholarPubMed
George, M. S., Ketter, T. A. & Post, R. M. (1994). Prefrontal cortex dysfunction in clinical depression. Depression, 2: 59–72CrossRefGoogle Scholar
George, M. S., Wassermann, E. M., Williams, W. A.. (1995). Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport, 6: 1853–1856CrossRefGoogle ScholarPubMed
George, M. S., Wassermann, E. M., Williams, W. A.. (1996). Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex. J. Neuropsych. Clin. Neurosci., 8: 172–180Google ScholarPubMed
George, M. S., Wassermann, E. M., Kimbrell, T. A.. (1997). Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression, a placebo-controlled crossover trial. Am. J. Psychiatry, 154: 1752–1756CrossRefGoogle ScholarPubMed
George, M. S., Nahas, Z., Molloy, M.. (2000). A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol. Psychiatry, 48: 962–970CrossRefGoogle ScholarPubMed
Gerschlager, W., Siebner, H. R. & Rothwell, J. C. (2001). Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology, 57: 449–455CrossRefGoogle ScholarPubMed
Ghabra, M. B., Hallett, M. & Wassermann, E. M. (1999). Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology, 52: 768–770CrossRefGoogle Scholar
Greenberg, B. D., George, M. S., Martin, J. D.. (1997). Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder, a preliminary study. Am. J. Psychiatry, 154, 867–869Google ScholarPubMed
Grisaru, N., Chudakov, B., Yaroslavsky, Y. & Belmaker, R. H. (1998). Transcranial magnetic stimulation in mania, a controlled study. Am. J. Psychiatry, 155: 1608–1610CrossRefGoogle ScholarPubMed
Hajak, G., Cohrs, S., Tergau, F.. (1998). Sleep and rTMS. Electroencephal. Clin. Neurophysiol., 107: 92Google Scholar
Henriques, J. B. & Davidson, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J. Abnormal Psychol., 99: 22–31CrossRefGoogle ScholarPubMed
Hoffman, R. E., Boutros, N. N., Berman, R. M.. (1999). Transcranial magnetic stimulation of left temporo-parietal cortex in three patients reporting hallucinated ‘voices’. Biol. Psychiatry, 46: 130–132CrossRefGoogle Scholar
Hoffman, R. E., Boutros, N. N, Hu, S., Berman, R. M., Krystal, J. H. & Charney, D. S. (2000). Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet, 355CrossRefGoogle Scholar
Ji, R. R., Schlaepfer, T. E., Aizenman, C. D.. (1998). Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc. Natl Acad. Sci., USA, 95: 15635–15640CrossRefGoogle ScholarPubMed
Karp, B. I., Wassermann, E. M., Porter, S. & Hallett, M. (1997). Transcranial magnetic stimulation acutely decreases motor tics. Neurology, 48: A397Google Scholar
Kellaway, P. (1946). The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull. Hist. Med., 20: 112–137Google ScholarPubMed
Kimbrell, T. A., Little, J. T., Dunn, R. T.. (1999). Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol. Psychiatry, 46: 1603–1613CrossRefGoogle ScholarPubMed
Klein, E., Kreinen, I., Chistyakov, A.. (1999). Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression. A double blind controlled study. Arch. Gen. Psychiatry, 56: 315–320CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Pascual-Leone, A., Felician, O.. (1999). The role of area 17 in visual imagery, convergent evidence from PET and rTMS. Science, 284: 167–170CrossRefGoogle ScholarPubMed
Lee, G. P., Loring, D. W., Meader, K. J. & Brooks, B. B. (1990). Hemispheric specialization for emotional expression, a reexamination of results from intracarotid administration of sodium amobarbital. Brain Cogn., 12, 267–280CrossRefGoogle ScholarPubMed
Lippitz, B. E., Mindus, P., Meyerson, B. A., Kihlstrom, L. & Lindquist, C. (1999). Lesion topography and outcome after thermocapsulotomy or gamma knife capsulotomy for obsessive-compulsive disorder, relevance of the right hemisphere. Neurosurgery, 44: 452–458CrossRefGoogle Scholar
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. (2000). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res., 133: 425–430CrossRefGoogle ScholarPubMed
Mally, J. & Stone, T. W. (1999a). Improvement in parkinsonian symptoms after repetitive transcranial magnetic stimulation. J. Neurol. Sci., 162, 179–184CrossRefGoogle Scholar
Mally, J. & Stone, T. W. (1999b). Therapeutic and ‘dose dependent’ effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson's disease. J. Neurosci. Res., 57: 935–9403.0.CO;2-8>CrossRefGoogle Scholar
Martin, J. D., George, M. S., Greenberg, B. D.. (1997). Mood effects of prefrontal repetitive high-frequency TMS in healthy volunteers. CNS Spectrums, 2: 53–68CrossRefGoogle Scholar
Martinot, J. L., Hardy, P., Feline, A.. (1990). Left prefrontal glucose hypometabolism in the depressed state, a confirmation. Am. J. Psychiatry, 147: 1313–1317Google Scholar
Mayberg, H. S., Brannan, S. K., Mahurin, R. K.. (1997). Cingulate function in depression, a potential predictor of treatment response. Neuroreport, 8: 1057–1061CrossRefGoogle Scholar
Mayberg, H. S., Robinson, R. G., Wong, D. F.. (1998). PET imaging of cortical S2 serotonin receptors after stroke, lateralized changes and relationship to depression. Am. J. Psychiatry, 145: 937–943Google Scholar
Mossiman, U. P., Toscji, N., Kresse, A. E., Post, A. & Keck, M. E. (2000). Effects of repetitive transcranial magnetic stimulation of left prefrontal cortex in healthy volunteers. Psychiat. Res., 94: 251–256CrossRefGoogle Scholar
Muellbacher, W., Ziemann, U., Boroojerdi, B. & Hallett, M. (2001). Effect of low frequency TMS on motor excitability and basic motor behaviour. Clin. Neurophysiol., 111: 1002–1007CrossRefGoogle Scholar
Munchau, A., Bloem, B., Irlbacjer, K., Trimble, M. & Rothwell, J. C. (2002). Functional connectivity of human motor and premotor cortex explored with transcranial magnetic stimulation. J. Neurosci., 22: 554–561CrossRefGoogle ScholarPubMed
Nedjat, S. & Folkers, H. W. (1999). Induction of a reversible state of hypomania by rapid rate transcranial stimulation over the left prefrontal lobe. J. ECT, 15: 166–168CrossRefGoogle ScholarPubMed
Nobler, M. S., Sackeim, H. A., Prohovnik, I.. (1994). Regional cerebral blood flow in mood disorders. III. Treatment and clinical response. Arch. Gen. Psychiatry, 51: 884–897CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Valls-Sole, J., Brasil-Neto, J. P.cammarota, A., Grafman, J. & Hallett, M. (1994). Akinesia in Parkinson's disease. II. Shortening of choice reaction time and movement time with subthreshold repetitive transcranial motor cortex stimulation. Neurology, 44: 892–898CrossRefGoogle Scholar
Pascual-Leone, A., Catala, M. D. & Pascual-Leone, A. (1996a). Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology, 46: 499–502CrossRefGoogle Scholar
Pascual-Leone, A., Rubio, B., Pallard, F. & Catalan, M. D. (1996b). Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet, 348: 233–237CrossRefGoogle Scholar
Paus, T.Jech, R., Thompson, C. J., Comeau, R., Peters, T. & Evans, A. C. (1997). Transcranial magnetic stimulation during positron emission tomography, a new method for studying connectivity of the human cerebral cortex. J. Neurosci., 17: 3178–3184CrossRefGoogle ScholarPubMed
Rauch, S. L., Jenike, M. A., Alpert, N. M.. (1994). Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry, 51: 62–70CrossRefGoogle ScholarPubMed
Robinson, R. G., Kubos, K. L., Starr, L. B., Rao, K. & Price, T. R. (1984). Mood disorders in stroke patients. Importance of location of lesion. Brain, 107: 81–93CrossRefGoogle Scholar
Rush, A. J., George, M. S., Sackeim, H. A.. (2000). Vagus nerve stimulation (VNS) for treatment-resistant depressions, a multicenter study. Biol. Psychiatry, 47: 276–286CrossRefGoogle ScholarPubMed
Sackeim, H. A., Greenberg, M. S., Weiman, A. L., Gur, R. C., Hungerbuhler, J. P. & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence. Arch. Neurol., 39: 210–218CrossRefGoogle ScholarPubMed
Saletu, B., Brandstatter, N., Metka, M.. (1995). Double-blind, placebo-controlled, hormonal, syndromal and EEG mapping studies with transdermal oestradiol therapy in menopausal depression. Psychopharmacology, 122, 321–329CrossRefGoogle ScholarPubMed
Schutter, D. J. L. G., Honk, J., d'Alfonso, A. L., Postma, A. & de Haan, E. H. F. (2001). Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport, 12: 445–447CrossRefGoogle Scholar
Shimamoto, H., Takasaki, K., Shigemori, M., Imaizumi, T., Ayabe, M. & Shoji, H. (2001). Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson's disease. J. Neurol., 248: III 48–52CrossRefGoogle ScholarPubMed
Siebner, H. R., Mentschel, C., Auer, C. & Conrad, B. (1999a). Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. Neuroreport, 10: 589–594CrossRefGoogle Scholar
Siebner, H. R., Tormos, J. M., Ceballos-Baumann, A. O.. (1999b). Low frequency repetitive transcranial magnetic stimulation of the motor cortex in writers' cramp. Neurology, 52: 529–537CrossRefGoogle Scholar
Siebner, H. R., Peller, M., Willoch, F.. (2000). Lasting cortical activation after repetitive TMS of the motor cortex, a glucose metabolic study. Neurology, 22: 956–962CrossRefGoogle Scholar
Speer, A. M., Willis, M. W., Herscovitch, P.. (2000). Intensity-dependent rCBF changes during 1 Hz rTMS over the left primary motor and prefrontal cortices. Biol. Psychiatry, 47: 105SCrossRefGoogle Scholar
Starkstein, S. E., Robinson, R. G. & Price, T. R. (1987). Comparison of cortical and subcortical lesions in the production of poststroke mood disorders. Brain, 110: 1045–1059CrossRefGoogle ScholarPubMed
Starkstein, S. E., Preziosi, T. J., Bolduc, P. L. & Robinson, R. G. (1990). Depression in Parkinson's disease. J. Nerv. Ment. Dis., 178: 27–31CrossRefGoogle ScholarPubMed
Strafella, A. P., Paus, T., Barrett, J. & Dagher, A. (2001). Transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci., 21: RC157CrossRefGoogle ScholarPubMed
Szuba, M. P., O'Reardon, J. P., Rai, A. S.. (2001). Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression. Biol. Psychiatry, 50: 22–27CrossRefGoogle ScholarPubMed
Tergau, F., Wassermann, E. M., Paulus, W. & Ziemann, U. (1999). Lack of clinical improvement in patients with Parkinson's disease after low and high frequency repetitive transcranial magnetic stimulation. Electroencephalgr. Clin. Neurophysiol., 51 (suppl.): 281–288Google ScholarPubMed
Touge, T., Gerschlager, W., Brown, P. & Rothwell, J. C. (2001). Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?Clin. Neurophysiol., 112: 2138CrossRefGoogle ScholarPubMed
Tucker, D. M., Stenslie, C. E., Roth, R. S. & Shearer, S. L. (1981). Right frontal lobe activation and right hemisphere performance. Decrement during a depressed mood. Arch. Gen. Psychiatry, 38: 169–174CrossRefGoogle ScholarPubMed
Valls-Sole, J., Pascual-Leone, A., Brasil-Neto, J. P., Cammorat, A., McShane, L. & Hallett, M. (1994). Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease. Neurology, 44: 735–741CrossRefGoogle ScholarPubMed
Wagner, A. D., Poldrack, R. A., Eldridge, L. L., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1998). Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. Neuroreport, 9: 3711–3717CrossRefGoogle ScholarPubMed
Wassermann, E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation, report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr. Clin. Neurophysiol., 108: 1–16CrossRefGoogle ScholarPubMed
Weissman, J. D., Epstein, C. M. & Davey, K. R. (1992). Magnetic brain stimulation and brain size, relevance to animal studies. Electroencephalogr. Clin. Neurophysiol., 85: 215–219CrossRefGoogle ScholarPubMed
Ziemann, U., Paulus, W. & Rothenburger, A. (1997). Decreased motor inhibition in Tourette's disorder, evidence from transcranial magnetic stimulation. Am. J. Psychiatry, 154: 1277–1284Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×