Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T01:46:12.574Z Has data issue: false hasContentIssue false

Chapter 10 - Soil Biology

from Part II - Pedology, Physics, Chemistry and Biology

Published online by Cambridge University Press:  09 January 2019

Pedro A. Sanchez
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adl, SM. 2003. The Ecology of Soil Decomposition. CABI Publishing, Wallingford.Google Scholar
Alegre, JC, Pashanasi, B and Lavelle, P. 1996. Dynamics of soil physical properties in Amazonian agroecosystems inoculated with earthworms. Soil Science Society of America Journal 60: 15221529.Google Scholar
Aranda, E, Barois, I, Arellano, P, Irisson, S, Salazar, T, Rodríguez, J and Patrón, JC. 1999. Vermicomposting in the tropics. Earthworm Management in Tropical Agroecosystems, Lavelle, P, Brussard, L and Hendrix, P (eds.). CABI Publishing, Wallingford, pp. 253289.Google Scholar
Ayuke, FO, Pulleman, MM, Vanlauwe, B, de Goede, RGM, Six, J, Csuzdi, C and Brussard, L. 2011. Agricultural management affects earthworm and termite diversity across sub-humid to semi-arid tropical zones. Agriculture, Ecosystems and Environment 140: 148154.Google Scholar
Badejo, MA and Tian, G. 1999. Abundance of soil mites under four agroforestry tree species with contrasting litter quality. Biology and Fertility of Soils 30: 107112.CrossRefGoogle Scholar
Bardgett, R. 2005. The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford.Google Scholar
Barea, JM and Azcón-Aguilar, C. 1983. Mycorrhizas and their significance in nodulating, nitrogen-fixing plants. Advances in Agronomy 36: 153.Google Scholar
Barois, I, Lavelle, P, Brossard, M, Tondoh, J, Martinez, A, Rossi, JP, Senapati, BK, Angeles, A, Fragoso, C, Jimenez, JJ and Decaëns, T. 1999. Ecology of earthworm species with large environmental tolerance and/or extended distributions. Earthworm Management in Tropical Agroecosystems, Lavelle, P, Brussaard, L and Hendrix, P. (eds.). CABI Publishing, Wallingford, pp. 5785.Google Scholar
Barrios, E. 2007. Soil biota, ecosystem services and land productivity. Ecological Economics 64: 269285.Google Scholar
Barros, E, Mathieu, J, Tapia-Coral, S, Nascimento, AR and Lavelle, P. 2006. Soil Macrofauna Communities in Amazonia. Soil Biodiversity in Amazonian and Other Brazilian Ecosystems, FMS Moreira, Siqueira, JO and Brussard, L (eds.). CABI Publishing, Wallingford, pp. 4355.Google Scholar
Bastida, F, Moreno, JL, Nicolás, C, Hernández, T and Garcia, C. 2009. Soil metaproteomics: A review of an emerging environmental science. Significance, methodology and perspectives. European Journal of Soil Science 60: 845859.Google Scholar
Beare, MH, Reddy, MV, Tian, G and Srivastava, SC. 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of decomposer biota. Applied Soil Ecology 6: 87108.Google Scholar
Bignell, DE, Tondoh, J, Dibog, l, Huang, SP, Moreira, F, Nwaga, D, Pashanasi, B, Pereira, EG, Susilo, FX and Swift, MJ. 2005. Belowground biodiversity assessment: Developing a key functional group approach in best-bet alternatives to slash and burn. Slash and Burn Agriculture: The Search for Alternatives, Palm, CA, Vosti, SA, Sanchez, PA and Ericksen, PJ (eds.). Columbia University Press, New York, NY, pp. 119142.Google Scholar
Black, HIJ and Okwakol, MJN. 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of termites. Applied Soil Ecology 6: 3753.Google Scholar
Blanchart, E. 1992. Restoration by earthworms (Megascolecidae) of the macroaggregate structure of a de-structured savanna soil under field conditions. Soil Biology and Biochemistry 24: 15871594.Google Scholar
Blanchart, E, Albrecht, A, Alegre, J, Duboiset, A, Gilot, C, Pashanasi, B, Lavelle, P and Brussard, L. 1999. Effect of earthworms on soil structure and physical properties. Earthworm Management in Tropical Agroecosystems, Lavelle, P, Brussard, L and Hendrix, P (eds.). CABI Publishing, Wallingford, pp. 149172.Google Scholar
Brady, NC and Weil, RR. 2008. The Nature and Properties of Soils, 14th edition. Pearson Prentice Hall, Upper Saddle River, NJ.Google Scholar
Brown, S, Anderson, JM, Woomer, PL, Swift, MJ and Barrios, E. 1994. Soil biological processes in tropical ecosystems. The Biological Management of Tropical Soil Fertility, Woomer, PL and Swift, MJ (eds.). Wiley, Chichester, pp. 1546.Google Scholar
Cadisch, G and Giller, KE (eds.). 1997. Driven by Nature: Plant Litter Quality and Decomposition. CAB Publishing, Wallingford.Google Scholar
Cardoso, EJBN, Cardoso, IM, Nogeira, MA, Maluche Baretta, CRD and de Paula, AM. 2010. Micorrizas arbusculares na aquisição de nutrientes pelas plantas. Micorrizas: 30 Anos de Pesquisas no Brasil, Siqueira, JO, de Souza, FA, Cardoso, EJBN and Tsai, Siu Nui (eds.). Editora da Universidade Federal de Lavras (UFLA), Lavras, pp. 153214.Google Scholar
Costanza, R, d’Arge, R, de Groot, R, Farber, S, Grasso, M, Hannon, B, Limburg, K, Naeem, S, O’Neill, RV, Paruelo, J, Raskin, RG, Sutton, P and van den Belt, M. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253260.Google Scholar
Decaëns, T and Rossi, JP. 2001. Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture (Carimagua, Colombia). Ecography 24: 671682.Google Scholar
Desai, C, Pathak, H and Madamwa, D. 2010. Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogenic contaminated sites. Bioresource Technology 101: 15581569.CrossRefGoogle ScholarPubMed
Dick, RP, Yamoah, C, Diack, M and Badiane, AN. 2001. Soil microorganisms and soil fertility. Sustaining Soil Fertility in West Africa. SSSA Special Publication 58, Tian, G, Ishida, F and Keatinge, JDH (eds). Soil Science Society of America, Madison, WI, pp. 2343.Google Scholar
Dodd, JC. 1999. Recent advances in understanding the role of arbuscular mycorrhizas in plant production. Inter-Relação Fertlilidade: Biologia de Solos e Nutrição de Plantas, Siqueira, JO, Moreira, FMS, Lopes, AS, Guihlerme, LRG, Faquin, V, Furtini Neto, AE and Carvalho, JG (eds.). Sociedade Brasileira de Ciência do Solo e Universidade Federal de Lavras, Lavras, pp. 687703.Google Scholar
Duxbury, JM, Scott Smith, M, Doran, JW, Jordan, C, Szott, LT and Vance, E. 1989. Soil organic matter as a source and a sink of plant nutrients. Dynamics of Soil Organic Matter in Tropical Ecosystems DC Coleman, Oades, JM and Uehara, G (eds.). University of Hawaii Press, Honolulu, HI, pp. 3367.Google Scholar
Fierer, N and Jackson, RB. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103: 626631.Google Scholar
Fragoso, C, Kanyonyo, J, Moreno, A, Senapati, BK, Bramchart, E and Rodríguez, C. 1999. A survey of tropical earthworms: Taxonomy, biogeography and environmental plasticity. Earthworm Management in Tropical Agroecosystems, Lavelle, P, Brussard, L and Hendrix, P (eds.). CABI Publishing, Wallingford, pp. 126.Google Scholar
Greenland, DJ. 1994. Long-term cropping experiments in developing countries: The need, the history and the future. Long-term Experiments in Agricultural and Ecological Sciences, Leigh, RA and Johnstone, AE (eds.). CABI Publishing, Wallingford, pp. 187209.Google Scholar
Högberg, P. 1982. Mycorrhizal associations in some woodland and forest trees and shrubs in Tanzania. New Phytologist 92: 407415.Google Scholar
Howeler, RH, Sieverding, E and Saif, S. 1987. Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant and Soil 100: 249283.Google Scholar
Huang, PM and Schnitzer, M (eds.). 1986. Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Soil Science Society of America, Madison, WI.Google Scholar
Huxley, PA. 1999. Tropical Agroforestry. Blackwell Science, London.Google Scholar
Johnson, NC, Graham, JH and Smith, FA. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135: 575586.Google Scholar
Jones, DT, Susilo, FX, Bignell, DE, Hardiwinoto, S, Gillison, AN and Eggleton, P. 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Soil Ecology 40: 380391.Google Scholar
Jones, JA. 1990. Termites, soil fertility and carbon cycling in dry tropical Africa: A hypothesis. Journal of Tropical Ecology 6: 291305.Google Scholar
Krogh, PH. 2010. European Atlas of Soil Biodiversity. European Commission, Joint Research Centre, Ispra.Google Scholar
Lal, R. 1987. Tropical Ecology and Physical Edaphology. Wiley, Chichester.Google Scholar
Lal, R. 2000. Restorative effects of Mucuna utilis on soil organic carbon pool of a severely degraded Alfisol in western Nigeria. Global Climate Change in Tropical Ecosystems, Lal, R, Kimble, JM and Stewart, BA (eds.). CRC Press, Boca Raton, FL, pp. 147156.Google Scholar
Lavelle, P. 1988. Earthworm activities and the soil system. Biology and Fertility of Soils 6: 237251.Google Scholar
Lavelle, P. 2012. Soil as a habitat. Soil Ecology and Ecosystem Services, Wall, DH (ed.). Oxford University Press, Oxford, pp. 727.Google Scholar
Lavelle, P, Brussard, L and Hendrix, P (eds.). 1999. Earthworm Management in Tropical Agroecosystems. CABI Publishing, Wallingford.Google Scholar
Lavelle, P, Decaëns, T, Aubert, M, Barot, S, Blouin, M, Bureau, F, Margeries, P, Mora, P and Rossi, JP. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42: S3S15.Google Scholar
Lavelle, P and Pashanasi, B. 1989. Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 33: 283291.Google Scholar
Lopes Assad, ML. 1997. Fauna do solo. Biología dos Solos dos Cerrados, Vargas, MAT and Hungria, M (eds.). Embrapa Cerrados, Planaltina, pp. 363443.Google Scholar
Madhavan, DB, Mendham, D, Mele, P, Kasel, S, Kitching, M, Weston, C and Baker, T. 2010. An assessment of diffuse reflectance mid-infrared spectroscopy for measuring soil carbon, nitrogen and microbial biomass. 19th World Congress of Soil Science, CSIRO Division of Soils, Canberra, published as a CD ROM.Google Scholar
Mando, A and Miedema, R. 1997. Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology 6: 241249.Google Scholar
Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC.Google Scholar
Miranda, JCC and de Miranda, LN. 1997. Micorriza arbuscular. Biología dos Solos dos Cerrados, Vargas, MAT and Hungria, M (eds.). Embrapa Cerrados, Planaltina, pp. 69123.Google Scholar
Moreira, FMS and Siqueira, JO. 2006. Microbiología e Bioquímica do Solo. Editora UFLA, Lavras.Google Scholar
Moreira, FMS, Huising, EJ and Bignell, DE (eds.). 2008. A Handbook of Tropical Soil Biology: Sampling and Characterization of Below-Ground Biodiversity. Earthscan, London.Google Scholar
Nye, PH and Greenland, DJ. 1960. The Soil Under Shifting Cultivation. Commonwealth Agricultural Bureaux, Farnham Royal.Google Scholar
O’Donnell, AG, Goodfellow, M and Hawksworth, DL. 1994. Theoretical and practical aspects of the quantification of biodiversity among microorganisms. Philosophical Transactions of the Royal Society B 345: 6573.Google Scholar
Oliveira, VL de, de Oliveira, LP and Rossi, MR. 2010. Ectomicorrizas no Brasil: Diversidades de fungos e aplicação. Micorrizas: 30 Anos de Pesquisas no Brasil, Siqueira, JO, de Souza, FA, Cardoso, EJBN and Tsai, Siu Nui (eds.). Editora da Universidade Federal de Lavras (UFLA), Lavras, pp. 648677.Google Scholar
Palm, CA and Swift, MJ. 2002. Soil fertility as an ecosystem concept. 17th World Congress of Soil Science, Keynote Lectures, Soil and Fertilizer Society of Thailand, Bangkok, published as a CD ROM.Google Scholar
Palm, CA, Myers, RJK and Nandwa, S. 1997. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. Replenishing Soil Fertility in Africa. SSSA Special Publication 51, Buresh, RJ, Sanchez, PA and Calhoun, F (eds.). Soil Science Society of America, Madison, WI, pp. 193218.Google Scholar
Palm, CA, Vosti, SA, Sanchez, PA and Ericksen, PJ (eds.). 2005. Slash-and-Burn Agriculture: The Search for Alternatives. Columbia University Press, New York, NY.Google Scholar
Palm, CA, Sanchez, PA, Ahamed, S and Awiti, A. 2007. Soils: A contemporary perspective. Annual Review of Environment and Resources 32: 99129.Google Scholar
Pauli, N, Oberthür, T, Barrios, E and Conacher, AJ. 2010. Fine-scale spatial and temporal variation in earthworm surface casting activity in agroforestry fields, western Honduras. Pedobiologia 53: 127139.Google Scholar
Pfenning, LH and de Abreu, LC. 2008. Saprophytic and plant pathogenic soil fungi. A Handbook of Tropical Soil Biology: Sampling and Characterization of Below-ground Biodiversity, Moreira, FMS, Huising, EJ and Bignell, DE (eds.). Earthscan, London, pp. 150174.Google Scholar
Pringle, RM, Doak, DF, Brody, AK, Jocqué, R and Palmer, TM. 2010. Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biology 8: e1000377.Google Scholar
Rivera, R and Fernández, KS. 2003. El Manejo Efectivo de La Simbiosis Micorrízica, Una Vía Hacia La Agricultura Sostenible: Estudio de Caso El Caribe. Instituto Nacional de Ciencias Agrícolas (INCA), La Habana.Google Scholar
Rivera, R and Fernández, F. 2006. Inoculation and management of mycorrhizal fungi within tropical agroecosystems. Biological Approaches to Sustainable Soil Systems, Uphoff, N, Ball, AS, Fernandes, E, Herren, H, Husson, O, Laing, M, Palm, C, Pretty, J, Sanchez, P, Sanginga, N and Thies, J (eds.). Taylor and Francis, Boca Raton, FL, pp. 479500.Google Scholar
Sanginga, N and Woomer, PL (eds.). 2009. Integrated Soil Fertility Management in Africa: Principles, Practices and Developmental Process. TSBF–CIAT, Nairobi.Google Scholar
Schneegurt, MA, Dore, SY and Kulpa, CF Jr. 2003. Direct extraction of DNA from soils for studies in microbial ecology. Current Issues Molecular Biology 5: 18.Google Scholar
Scholes, RJ and Walker, BH. 1993. An African Savanna: Synthesis of the Nylsvley Study. Cambridge University Press, Cambridge.Google Scholar
Selenska, S and Klingmuller, W. 1991. DNA recovery and direct detection of Tn5 sequences from soil. Letters in Applied Microbiology 13: 2124.Google Scholar
Senapati, BK, Lavelle, P, Giri, S, Pashanasi, B, Alegre, J, Decaëns, T, Jiménez, JJ, Albrecht, A, Blanchart, E, Mahieux, M, Rosseaux, L, Thomas, R, Panigrahi, PK and Venkatachalam, M. 1999. In-soil earthworm technologies for tropical ecosystems. Earthworm Management in Tropical Agroecosystems, Lavelle, P, Brussard, L and Hendrix, P (eds.). CABI Publishing, Wallingford, pp. 199238.Google Scholar
Siqueira, JO, de Souza, FA, Cardoso, EJBN and Tsai, Siu Nui (eds.). 2010. Micorrizas: 30 Anos de Pesquisas no Brasil. Editora da Universidade Federal de Lavras (UFLA), Lavras.Google Scholar
Strürmer, SL and Siqueira, JO. 2008. Diversity of arbuscular mycorrhizal fungi in Brazilian ecosystems. Soil Biodiversity in Amazonian and Other Brazilian Ecosystems, Moreira, FMS, Siqueira, JO and Brussard, L (eds.). CABI Publishing, Wallingford, pp. 206226.Google Scholar
Strürmer, SL and Saggin-Júnior, OJ. 2010. Banco de germoplasma de Glomeromycota no Brasil. Micorrizas: 30 Anos de Pesquisas no Brasil, Siqueira, JO, de Souza, FA, Cardoso, EJBN and Tsai, Siu Nui (eds.). Editora da Universidade Federal de Lavras (UFLA), Lavras, pp. 525550.Google Scholar
Swift, MJ, Heal, OW and Anderson, JM. 1979. Decomposition in Terrestrial Ecosystems. Blackwell, Oxford.Google Scholar
Swift, MJ, Izac, AMN and van Noordwijk, M. 2004. Biodiversity and ecosystem services in agricultural landscapes: Are we asking the right questions? Agriculture, Ecosystems and Environment 104: 113134.Google Scholar
Swift, MJ, Bignell, DE, Moreira, FMS and Huising, EJ. 2008. The inventory of soil biological diversity: Concepts and general guidelines. A Handbook of Tropical Soil Biology: Sampling and Characterization of Below-ground Biodiversity, Moreira, FMS, Huising, EJ and Bignell, DE (eds.). Earthscan, London, pp. 116.Google Scholar
Tian, G, Olimah, JA, Adeoye, GO and Kang, BT. 2000. Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Science Society of America Journal 64: 222228.Google Scholar
Tisdall, J and Oades, JM. 1982. Organic matter and water-stable aggregates in soils. European Journal of Soil Science 33: 141163.Google Scholar
Trindade, AV, Saggin-Júnior, OJ and da Silveira, APD. 2010. Micorrhizas arbusculares na produção de mudas de plantas frutíferas e café. Micorrizas: 30 Anos de Pesquisas no Brasil, Siqueira, JO, de Souza, FA, Cardoso, EJBN and Tsai, Siu Nui (eds.). Editora da Universidade Federal de Lavras (UFLA), Lavras, pp. 415439.Google Scholar
Tsai, GL and Olson, BH. 1992. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Applied Environmental Microbiology 58: 10701074.Google Scholar
van Noordwijk, M, Lawson, G, Soumare, A, Groot, JJR and Hariah, K. 1996. Root distribution of trees and crops: Competition and/or complementarity. Tree–Crop Interactions: A Physiological Approach, Ong, CK and Huxley, PA (eds.). CABI Publishing, Wallingford, pp. 319364.Google Scholar
Villeneve, C, Charpentier, F, Lavelle, P, Feller, C, Brussard, l, Pashanasi, B, Barois, I, Albrecht, A and Patrón, JC. 1999. Effects of earthworms on soil organic matter and nutrient dynamics following earthworm inoculation in field experiment stations. Earthworm Management in Tropical Agroecosystems, Lavelle, P, Brussard, L and Hendrix, P (eds.). CABI Publishing, Wallingford, pp. 173197.Google Scholar
Vitousek, PM, Haettenschweiler, S, Olander, L and Allison, S. 2002. Nitrogen and nature. Ambio 31: 97101.Google Scholar
Wall, DH. (ed.). 2004. Sustaining Biodiversity and Ecosystem Services in Soils and Sediments. Island Press, Washington, DC.Google Scholar
Wall, DH, Bardgett, RD and Kelly, EF. 2010. Biodiversity in the dark. Nature Geoscience 3: 297298.Google Scholar
Wall, DH and Fierer, N. 2011. Surveying Unexplored Soil Biodiversity in Sub-Saharan Africa to Enhance Agricultural Productivity. Final Report March 2011. Colorado State University, Fort Collins, CO.Google Scholar
Wall, DH (editor in chief). 2012. Soil Ecology and Ecosystem Services. Oxford University Press, Oxford.Google Scholar
Wielemaker, WG. 1984. Soil Formation by Termites: A Study in the Kisii Area, Kenya. Wageningen Agricultural University, Wageningen.Google Scholar
Woomer, PL and Swift, MJ (eds.). 1994. The Biological Management of Tropical Soil Fertility. Wiley, Chichester.Google Scholar
Young, IM and Crawford, JW. 2004. Interactions and self-organization in the soil-microbe complex. Science 304: 16341637.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Soil Biology
  • Pedro A. Sanchez, University of Florida
  • Book: Properties and Management of Soils in the Tropics
  • Online publication: 09 January 2019
  • Chapter DOI: https://doi.org/10.1017/9781316809785.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Soil Biology
  • Pedro A. Sanchez, University of Florida
  • Book: Properties and Management of Soils in the Tropics
  • Online publication: 09 January 2019
  • Chapter DOI: https://doi.org/10.1017/9781316809785.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Soil Biology
  • Pedro A. Sanchez, University of Florida
  • Book: Properties and Management of Soils in the Tropics
  • Online publication: 09 January 2019
  • Chapter DOI: https://doi.org/10.1017/9781316809785.012
Available formats
×