Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T06:12:12.178Z Has data issue: true hasContentIssue false

9 - Evolutionary Global Optimization via Change of Measures: A Martingale Route

Published online by Cambridge University Press:  08 February 2018

Debasish Roy
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Introduction

The efficacy of the concept of change of measures was demonstrated in the last few chapters in the context of non-linear stochastic filtering—a tool that also has considerable scientific usefulness in developing numerical schemes for system identification problems. This chapter also concerns an application of the same notion leading to a paradigm [Sarkar et al. 2014] on global optimization problems, wherein solutions are guided mainly through derivative-free directional information computable from the sample statistical moments of the design (state) variables within a MC setup. Before the ideas on this approach are presented in some detail, it is advisable to first focus on some of the available methodologies/strategies for solving such optimization problems.

In most cases of practical interest, the cost or objective functional, whose extremization solves the optimization problem, could be non-convex, non-separable and even non-smooth. Here separability means that the cost function can be additively split in terms of the component functions and the optimization problem may actually be split into a set of sub-problems. An optimization problem is convex if it involves minimization of a convex function (or maximization of a concave function) where the admissible state variables are in a convex set. For a convex problem, a fundamental result is that a locally optimal solution is also globally optimal. The classical methods [Fletcher and Reeves 1964, Fox 1971, Rao 2009] that mostly use directional derivatives are particularly useful in solving convex problems (Fig. 9.1). Non-convex problems, on the other hand, may have many local optima, and choosing the best one (i.e., the global extremum) could be an extremely hard task. In global optimization, we seek, in the design or state or parameter space, the extremal locations of nonconvex functions subject to (possibly) nonconvex constraints. Here the objective functional could be multivariate, multimodal and even non-differentiable, which together precludes applying a gradient-based Newton–step whilst solving the optimization problem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×