Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-09T07:40:00.860Z Has data issue: false hasContentIssue false

12 - Early hominin social learning strategies underlying the use and production of bone and stone tools

from Part IV - Archaeological perspectives

Published online by Cambridge University Press:  05 March 2013

Matthew V. Caruana
Affiliation:
Bernard Price Institute for Palaeontological Research, School of Geosciences and Institute for Human Evolution, University of the Witwatersrand
Francesco d’Errico
Affiliation:
University of Bordeaux, UMR-CNRS PACEA, Equipe Préhistoire, Paléoenvironnement, Patrimoine Department of Archaeology, History, Cultural Studies and Religion, University of Bergen
Lucinda Backwell
Affiliation:
Bernard Price Institute for Palaeontological Research, School of Geosciences and Institute for Human Evolution, University of the Witwatersrand
Crickette M. Sanz
Affiliation:
Washington University, St Louis
Josep Call
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Get access

Summary

Introduction

Current trends in research toward the integration of primatological and archaeological models have provided significant insight into the emergence of tool use from a multidisciplinary perspective (e.g., Wynn & McGrew 1989; van Schaik et al., 1999; Backwell & d’Errico, 2001, 2008, 2009; d’Errico et al., 2001; Mercader et al., 2002, 2007; van Schaik & Pradhan, 2003; Marzke, 2006; Lockwood et al., 2007; Sanz & Morgan, 2007; Carvalho et al., 2008, 2009; Gowlett, 2009; Haslam et al., 2009; Hernandez-Aguilar, 2009; Uomini, 2009; Visalberghi et al., 2009; Whiten et al., 2009a; Chapter 11). Recently, this has culminated in the new “primate archaeology” subdiscipline (Haslam et al., 2009), which has effectively modeled the advantages of incorporating comparative primatological research within the study of early hominin technologies. While this approach advances a unique perspective concerning the evolution of tool use and production, the predominantly ethological focus of primate archaeology has not fully benefited from exploring neuro-cognitive mechanisms in non-human primates and modern humans that might pertain to tool use in the deep past. Cognition remains a critical element in archaeological and paleoanthropological theories regarding the nature of early hominin technologies (e.g., Toth, 1985; Semaw, 2000; Delagnes & Roche, 2005; Stout et al., 2008; Whiten et al., 2009a). Thus, examining the cognitive capacities underlying tool use within the Order Primates is a critical pursuit toward understanding the social and cultural contexts of tool-mediated behavior, and the evolution of technology (van Schaik et al., 1999; van Schaik & Pradhan, 2003; see also Chapters 2, 3 and 10). This chapter presents and explores various primatological perspectives concerning tool use, and cognitive approaches regarding the emergence of technology within the hominin lineage. The infusion of cognitive perspectives within the primate archaeology framework is imperative for defining the biological, sociocultural and ecological contexts of tool use and production, thus enhancing its interpretive potential.

Type
Chapter
Information
Tool Use in Animals
Cognition and Ecology
, pp. 242 - 285
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backwell, L. R. & d’Errico, F. (2001). Evidence of termite foraging by Swartkrans early hominids. Proceedings of the National Academy of Sciences USA, 98(4), 1358–1363.CrossRefGoogle ScholarPubMed
Backwell, L. R. & d’Errico, F. (2003). Additional evidence on the early hominid bone tools from Swartkrans with reference to spatial distribution of lithic and organic artefacts. South African Journal of Science, 99(May/June), 259–266.Google Scholar
Backwell, L. R. & d’Errico, F. (2004). The first use of bone tools: a reappraisal of the evidence from Olduvai Gorge, Tanzania. Palaeontologia Africana, 40, 95–158.Google Scholar
Backwell, L. R. & d’Errico, F. (2005). The origins of bone tool technology and the identification of early hominid cultural traditions. In d’Errico, F. & Backwell, L. R. (eds.) From Tools to Symbols: From Early Hominids to Modern Humans (pp. 238–275). Johannesburg: Witwatersrand University Press.Google Scholar
Backwell, L. R. & d’Errico, F. (2008). Early hominid bone tools from Drimolen, South Africa. Journal of Archaeological Science, 35, 2880–2894.CrossRefGoogle Scholar
Backwell, L. R. & d’Errico, F. (2009). Additional evidence of early hominid bone tools from South Africa. Palaeontologia Africana, extended abstract, 44, 91–94.Google Scholar
Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 5473–5481.CrossRefGoogle ScholarPubMed
Biro, D., Inoue-Nakamura, N., Tonooka, R., et al. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Animal Cognition, 6, 213–223.CrossRefGoogle ScholarPubMed
Blakemore, S. J. & Decety, J. (2001). From the perception of action to the understanding of intension. Nature Reviews Neuroscience, 2, 561–567.Google Scholar
Boesch, C. (1991). Teaching among wild chimpanzees. Animal Behaviour, 41(3), 530–532.CrossRefGoogle Scholar
Brain, C. K. & Shipman, P. (1993). The Swartkrans bone tools. In Brain, C. K. (ed.) Swartkrans: A Cave’s Chronicle of Early Man (pp. 195–215). Pretoria: Transvaal Museum.Google Scholar
Brass, M. & von Cramon, D. Y. (2002). The role of the frontal cortex in task preparation. Cerebral Cortex, 12, 908–914.CrossRefGoogle ScholarPubMed
Byrne, R. W. (1999). Imitation without intentionality. Animal Cognition, 2, 63–72.CrossRefGoogle Scholar
Byrne, R. W. (2003). Imitation as behaviour parsing. Philosophical Transactions of the Royal Society of London B, 358, 529–536.CrossRefGoogle ScholarPubMed
Byrne, R. W. (2005). Detecting, understanding, and explaining imitation by animals. In Hurely, S. & Chater, N. (eds.) Perspectives on Imitation (pp. 225–242). Vol. 1. Cambridge, MA and London: MIT Press.Google Scholar
Byrne, R. W. & Russon, A. E. (1998). Learning by imitation. Behavioural and Brain Sciences, 21, 667–721.CrossRefGoogle ScholarPubMed
Caldwell, C. A. & Whiten, A. (2002). Evolutionary perspectives on imitation. Animal Cognition, 5, 193–208.CrossRefGoogle ScholarPubMed
Call, J., Carpenter, M. & Tomasello, M. (2005). Copying results and copying actions in the process of social learning: chimpanzees (Pan troglodytes) and human children (Homo sapiens). Animal Cognition, 8, 151–163.CrossRefGoogle Scholar
Cantalupo, C. & Hopkins, W. D. (2001). Asymmetric Broca’s area in great apes. Nature, 414, 505.CrossRefGoogle ScholarPubMed
Carvalho, S., Cunha, E., Sousa, E. & Matsuzawa, T. (2008). Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. Journal of Human Evolution, 55, 148–163.CrossRefGoogle ScholarPubMed
Carvalho, S., Biro, D., McGrew, W. C. & Matsuzawa, T. (2009). Tool-composite reuse in wild chimpanzees (Pan troglodytes). Animal Cognition, 12, S103–S114.CrossRefGoogle Scholar
Cerling, T., Bowman, J. R. & O’Neil, J. R. (1988). An isotopic study of a fluvial-lacustrine sequence. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 335–356.CrossRefGoogle Scholar
Craighero, L., Fadiga, L., Rizzolatti, G. & Umiltà, C. (1998). Visuomotor priming. Visual Cognition, 5(1/2), 109–125.CrossRefGoogle Scholar
Custance, D. M., Whiten, A. & Fredman, T. (1999). Social learning of artificial fruit processing in capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 113, 13–23.CrossRefGoogle Scholar
de Heinzelin, J., Clark, J. D., White, T., et al. (1999). Environment and behavior of 2.5 million-year-old Bouri hominids. Science, 284, 625–629.CrossRefGoogle ScholarPubMed
Delagnes, A. & Roche, H. (2005). Late Pliocene knapping skills. Journal of Human Evolution, 48, 435–472.CrossRefGoogle ScholarPubMed
d’Errico, F. & Backwell, L. R. (2003). Possible evidence of bone tool shaping by Swartkrans early hominids. Journal of Archaeological Science, 30, 1559–1576.CrossRefGoogle Scholar
d’Errico, F. & Backwell, L. R. (2009). Assessing the function of early hominin bone tools. Journal of Archaeological Science, 36, 1764–1773.CrossRefGoogle Scholar
d’Errico, F., Backwell, L. R. & Berger, L. R. (2001). Bone tool use in termite foraging by early hominids and its impact on our understanding of early hominid behaviour. South African Journal of Science, 97(March/April), 71–75.Google Scholar
Domínguez-Rodrigo, M., Pickering, T. P., Semaw, S. & Rogers, M. J. (2005). Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia. Journal of Human Evolution, 48, 109–121.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Rozzi, S. & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17(2), 212–226.CrossRefGoogle ScholarPubMed
Flynn, E. & Whiten, A. (2008). Imitation of hierarchical structure versus component details of complex actions by 3- and 5-year-olds. Journal of Experimental Child Psychology, 101, 228–240.CrossRefGoogle ScholarPubMed
Galef, B. G. (1988). Imitation in animals. In Zentall, T. & Galef, B. (eds.) Social Learning (pp. 3–28). Hillsdale, NJ: Erlbaum.Google Scholar
Gallese, V. (2000). The inner sense of action. Journal of Consciousness Studies, 7(10), 23–40.Google Scholar
Gallese, V. (2003). A neuroscientific grasp of concept. Philosophical Transactions of the Royal Society of London B, 358, 1231–1240.CrossRefGoogle Scholar
Gallese, V. (2006). Intentional attunement. Brain Research, 1079, 15–24.CrossRefGoogle ScholarPubMed
Gallese, V. (2009). Before and below “theory of mind.”Philosophical Transactions of the Royal Society of London B, 362, 659–669.CrossRefGoogle Scholar
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 199, 593–609.CrossRefGoogle Scholar
Gallese, V., Keysers, C. & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403.CrossRefGoogle ScholarPubMed
Garbarini, F. & Adenzato, M. (2004). At the root of social cognition. Brain and Cognition, 56, 100–106.CrossRefGoogle Scholar
Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Hillsdale, NJ: Psychological Press.Google Scholar
Gowlett, J. A. J. (2009). Artefacts of apes, humans, and others. Journal of Human Evolution, 57, 401–410.CrossRefGoogle ScholarPubMed
Grèzes, J. & Decety, J. (2002). Does visual perception of objects afford action?Neuropsychologia, 40, 212–222.CrossRefGoogle ScholarPubMed
Grove, M. & Coward, F. (2008). From individual neurons to social brains. Cambridge Archaeological Journal, 18(3), 387–400.CrossRefGoogle Scholar
Hare, B., Call, J., Agnetta, B. & Tomasello, M. (2000). Chimpanzees know what conspecifics see and do not see. Animal Behaviour, 59, 771–785.CrossRefGoogle Scholar
Hare, B., Call, J. & Tomasello, M. (2001). Do chimpanzees know what conspecifics know?Animal Behaviour, 61, 139–151.CrossRefGoogle ScholarPubMed
Haslam, M., Hernandez-Aguilar, A., Ling, V., et al. (2009). Primate archaeology. Nature, 460, 339–344.CrossRefGoogle ScholarPubMed
Hernandez-Aguilar, R. A. (2009). Chimpanzee nest distribution and site reuse in a dry habitat. Journal of Human Evolution, 57, 350–364.CrossRefGoogle Scholar
Heyes, C. M. (1993). Imitation, culture and cognition. Animal Behaviour, 46, 999–1010.CrossRefGoogle Scholar
Heyes, C. M. (1994). Social learning in animals. Biological Review, 69, 207–231.CrossRefGoogle ScholarPubMed
Heyes, C. M. (2009). Evolution, development and intentional control of imitation. Philosophical Transactions of the Royal Society of London B, 364, 2293–2298.CrossRefGoogle ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001). The theory of event coding (TEC). Behavioral and Brain Sciences, 24, 849–937.CrossRefGoogle Scholar
Hopper, L., Lambeth, S. P., Schapiro, S. J. & Whiten, A. (2008). Observational learning in chimpanzees and children through “ghost” conditions. Philosophical Transactions of the Royal Society of London B, 275, 835–840.Google ScholarPubMed
Horner, V. & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition, 8, 164–181.CrossRefGoogle Scholar
Horner, V., Whiten, A., Flynn, E. & de Waal, F. B. M. (2006). Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children. Proceedings of the National Academy of Sciences USA, 103, 13878–13883.CrossRefGoogle ScholarPubMed
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., et al. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), 529–535.CrossRefGoogle ScholarPubMed
Jeannerod, M. (2006). Motor Cognition. Oxford and New York: Oxford University Press.CrossRefGoogle Scholar
Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. (1995). Grasping objects. TINS, 18(7), 314–320.Google ScholarPubMed
Johnson-Frey, S., Newman-Norlund, R. & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15, 681–695.CrossRefGoogle ScholarPubMed
Jones, S. S. (2009). The development of imitation in infancy. Philosophical Transactions of the Royal Society of London B, 364, 2325–2335.CrossRefGoogle ScholarPubMed
Leakey, M. D. (1971). Olduvai Gorge. Vol. 3, Excavations in Beds I and II. Cambridge: Cambridge University Press.Google Scholar
Lesnik, J. (2011). Bone tool texture analysis and the role of termites in the diet of South African hominids. Palaeoanthropology, 2011, 268–281.Google Scholar
Lesnik, J. & Thackeray, J. F. (2007). The efficiency of stone and bone tools for opening termite mounds. South African Journal of Science, 103, 354–356.Google Scholar
Lockwood, C., Menter, C., Keyser, A. & Moggi-Cecchi, J. (2007). Extended male growth in a fossil hominid species. Science, 318, 1443–1446.CrossRefGoogle Scholar
Lonsdorf, E. V. (2006). What is the role of mothers in the acquisition of termite-fishing behaviors in wild chimpanzees (Pan troglodytes schweinfurthii)?Animal Cognition 9, 36–46.CrossRefGoogle ScholarPubMed
Lyons, D. E., Young, A. G. & Keil, F. C. (2007). The hidden structure of overimitation. Proceedings of the National Academy of Sciences USA, 104, 19751–19756.CrossRefGoogle ScholarPubMed
Lyons, D. E., Damrosch, D. H., Lin, J. K., Macris, D. M. & Keil, F. C. (2011). The scope and limits of overimitation in the transmission of artefact culture. Philosophical Transactions of the Royal Society of London B, 366, 1158–1167.CrossRefGoogle ScholarPubMed
Marzke, M. W. (1997). Precision grips, hand morphology and tools. American Journal of Physical Anthropology, 102, 91–110.3.0.CO;2-G>CrossRefGoogle Scholar
Marzke, M. W. (2006). Who made stone tools? In Roux, V. & Bril, B. (eds.) Stone Knapping (pp. 243–256). Cambridge: McDonald Institute Monographs.Google Scholar
Marzke, M. W. & Wullstein, K. L. (1996). Chimpanzee and human grips. International Journal of Primatology, 17(1), 117–139.CrossRefGoogle Scholar
McGuigan, N., Whiten, A., Flynn, E. & Horner, V. (2007). Imitation of causally opaque versus causally transparent tool use by 3- and 5-year-old children. Cognitive Development, 22, 353–364.CrossRefGoogle Scholar
Mercader, J., Panger, M. & Boesch, C. (2002). Excavation of a chimpanzee stone tool site in the African rainforest. Science, 296, 1452–1455.CrossRefGoogle ScholarPubMed
Mercader, J., Barton, H., Gillespie, J., et al. (2007). 4,300-year-old chimpanzee sites and the origins of percussive stone technology. Proceedings of the National Academy of Sciences USA, 104(9), 3043–3048.CrossRefGoogle ScholarPubMed
Ottoni, E. B., Dogo de Resende, B. & Izar, P. (2005). Watching the best nutcrackers. Animal Cognition, 24, 215–219.CrossRefGoogle Scholar
Petraglia, M. D., Shipton, C. & Paddayya, K. (2005). Life and mind in the Acheulean. In Gamble, G. & Porr, M. (eds.) The Hominid Individual in Context (pp. 197–219). London and New York: Routledge.Google Scholar
Pochon, J., Levy, R., Poline, J., et al. (2001). The role of the dorsolateral prefrontal cortex in the preparation of forthcoming actions. Cerebral Cortex, 11, 260–266.CrossRefGoogle ScholarPubMed
Porr, M. (2005). The making of the biface and the making of the individual. In Gamble, G. & Porr, M. (eds.) The Hominid Individual in Context (pp. 68–80). London and New York: Routledge.Google Scholar
Potts, R., Behrensmeyer, A. K. & Ditchfield, P. (1999). Paleolandscape variation and early Pleistocene hominid activities: Members 1 and 7, Olorgesailie Formation, Kenya. Journal of Human Evolution, 37, 747–788.CrossRefGoogle ScholarPubMed
Prat, S., Brugal, J., Tiercelin, J., et al. (2005). First occurrence of early Homo in the Nachukui Formation (West Turkana, Kenya) at 2.3–2.4 Myr. Journal of Human Evolution, 49, 230–240.CrossRefGoogle ScholarPubMed
Premack, D. & Woodruff, G. (1978). Does the chimpanzee have a theory of mind?Behavioral and Brain Sciences, 1, 516–526.CrossRefGoogle Scholar
Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210, 419–421.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Luppino, G. (2001). The cortical motor system. Neuron, 31, 889–901.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., et al. (1988). Functional organization of inferior area 6 in the macaque monkey. Experimental Brain Research, 71, 491–507.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996). Premotor cortex in the recognition of motor actions. Cognitive Brain Research, 3, 131–141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L. & Gallese, V. (2001). Neuropsychological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefGoogle Scholar
Rizzolatti, G., Fogassi, L. & Gallese, V. (2002). Motor and cognitive functions of the ventral premotor cortex. Current Opinion in Neurobiology, 12, 149–154.CrossRefGoogle ScholarPubMed
Rochat, M. J., Serra, E., Fadiga, L. & Gallese, V. (2008). The evolution of social cognition. Current Biology, 18, 227–232.CrossRefGoogle ScholarPubMed
Roche, H. (1989). Technological evolution in early hominids. Ossa, 14, 97–98.Google Scholar
Roche, H., Delagnes, A., Brugal, J., et al. (1999). Early hominid stone tool production and technical skill 2.34 Myr ago in West Turkana, Kenya. Nature, 399, 57–60.CrossRefGoogle ScholarPubMed
Romo, R., Hernández, A. & Zainos, A. (2004). Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron, 41, 165–173.CrossRefGoogle ScholarPubMed
Roux, V. & David, E. (2006). Planning abilities as a dynamic perceptual-motor skill. Stone Knapping (pp. 91–108). Cambridge: McDonald Institute Monographs.Google Scholar
Sanz, C. & Morgan, D. (2007). Chimpanzee tool technology in the Goualougo triangle. Journal of Human Evolution, 52, 420–433.CrossRefGoogle ScholarPubMed
Savage-Rumbaugh, S. & Fields, W. M. (2006). Rules and tools. In Toth, N. & Schick, K. (eds.) The Oldowan (pp. 223–241). Gosport, IN: Stone Age Institute Press.Google Scholar
Schick, K., Toth, N., Garufi, G., et al. (1999). Continuing investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 26, 821–832.CrossRefGoogle Scholar
Semaw, S. (2000). The world’s oldest stone artefacts from Gona, Ethiopia. Journal of Archaeological Science, 27, 1197–1214.CrossRefGoogle Scholar
Semaw, S. (2006). The oldest stone artefacts from Gona (2.6–2.5 Ma), Afar, Ethiopia. In Toth, N. & Schick, K. (eds.) The Oldowan (pp. 43–76). Gosport, IN: Stone Age Institute Press.Google Scholar
Semaw, S., Renne, P., Harris, J. W. K., et al. (1997). 2.5-million-year-old stone tools from Gona, Ethiopia. Nature, 385, 333–336.CrossRefGoogle ScholarPubMed
Semaw, S., Rogers, M. J., Quade, J., et al. (2003). 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 45, 169–177.CrossRefGoogle ScholarPubMed
Shennan, S. J. & Steele, J. (1999). Cultural learning in hominids. In Box, H. O. & Gibson, K. (eds.) Mammalian Social Learning. Cambridge: Cambridge University Press.Google Scholar
Shipman, P. (1984). The earliest tools. Anthroquest, 29, 9–10.Google Scholar
Shipman, P. (1989). Altered bones from Olduvai Gorge, Tanzania. In Bonnichsen, R. & Sorg, M. H. (eds.) Bone Modification (pp. 317–334). Orno, ME: Thompson-Shore, Inc.Google Scholar
Sommerville, J. A. & Woodward, A. L. (2005). Pulling out the intentional structure of actions. Cognition, 95, 1–30.CrossRefGoogle Scholar
Sommerville, J. A.Woodward, A. L. & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96, B1–B11.CrossRefGoogle ScholarPubMed
Steele, J. (1996). On the evolution of temperament and dominance style in hominid groups. In Steele, J. & Shennan, S. (eds.) The Archaeology of Human Ancestry (pp. 110–129). London and New York: Routledge.Google Scholar
Stoinski, T. S., Wrate, J. L., Ure, N. & Whiten, A. (2001). Imitative learning by captive western lowland gorillas (Gorilla gorilla gorilla) in simulated food-processing tasks. Journal of Comparative Psychology, 115, 272–281.CrossRefGoogle Scholar
Stout, D. (2002). Skill and cognition in stone tool production. Current Anthropology, 43(5), 693–772.CrossRefGoogle Scholar
Stout, D. (2006). Oldowan toolmaking and hominid brain evolution. In Toth, N. & Schick, K. (eds.) The Oldowan (pp. 267–306). Gosport, IN: Stone Age Institute Press.Google Scholar
Stout, D. (2010). The evolution of cognitive control. Topics in Cognitive Science, 2(4), 614–630.CrossRefGoogle ScholarPubMed
Stout, D. & Chaminade, T. (2007). The evolutionary neuroscience of tool making. Neuropsychologia, 45, 1091–1100.CrossRefGoogle ScholarPubMed
Stout, D. & Chaminade, T. (2009). Making tools and making sense. Cambridge Archaeological Journal, 19(1), 85–96.CrossRefGoogle Scholar
Stout, D. & Semaw, S. (2006). Knapping skills of the earliest Stone Age toolmakers. In Toth, N. & Schick, K. (eds.) The Oldowan (pp. 307–320). Gosport, IN: Stone Age Institute Press.Google Scholar
Stout, D., Toth, N., Schick, K. & Chaminade, T. (2008). Neural correlates of Early Stone Age toolmaking. Philosophical Transactions of the Royal Society of London B, 363, 1939–1949.CrossRefGoogle ScholarPubMed
Susman, R. L. (1988). Hand of Paranthropus robustus from Member 1, Swartkrans. Science, 240, 781–784.CrossRefGoogle Scholar
Susman, R. L. (1998). Fossil evidence for early hominid tool use. Science, 265, 1570–1573.CrossRefGoogle Scholar
Tennie, C., Call, J. & Tomasello, M. (2009). Ratcheting up the ratchet. Philosophical Transactions of the Royal Society of London B, 364, 2405–2415.CrossRefGoogle ScholarPubMed
Tomasello, M. (1996). Do apes ape? In Heyes, C. M. & Galef, B. G. (eds.) Social Learning in Animals (pp. 319–346). London: Academic Press.CrossRefGoogle Scholar
Tomasello, M. (1998). Emulation learning and cultural learning. Behavioral and Brain Sciences, 21, 703–704.CrossRefGoogle Scholar
Tomasello, M., Davis-Dasilva, M., Camak, L. & Bard, K. (1987). Observational learning of tool use by young chimpazees. Human Evolution, 2(2), 175–183.CrossRefGoogle Scholar
Tomasello, M., Kruger, A. C. & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 495–552.CrossRefGoogle Scholar
Tomasello, M., Call, J. & Hare, B. (2003). Chimpanzees understand psychological states. Trends in Cognitive Sciences, 7(4), 153–156.CrossRefGoogle ScholarPubMed
Toth, N. (1985). The Oldowan reassessed. Journal of Archaeological Science, 12, 101–120.CrossRefGoogle Scholar
Toth, N., Schick, K. D., Savage-Rumbaugh, S., Sevcik, R. & Rumbaugh, D. (1993). Pan the tool-making. Journal of Archaeological Science, 20, 81–91.CrossRefGoogle Scholar
Toth, N., Schick, K. & Semaw, S. (2006). A comparative study of the stone tool-making skills of Pan, Australopithecus, and Homo sapiens. In Toth, N. & Schick, K. (eds.) The Oldowan (pp. 155–222). Gosport, IN: Stone Age Institute Press.Google Scholar
Uller, C. & Nichols, S. (2000). Goal attribution in chimpanzees. Cognition, 76, B27–B34.CrossRefGoogle ScholarPubMed
Umiltà, M. A., Kohler, E., Gallese, V., et al. (2001). I know what you are doing. Neuron, 31, 155–165.CrossRefGoogle ScholarPubMed
Uomini, N. T. (2009). The prehistory of handedness. Journal of Human Evolution, 57, 411–419.CrossRefGoogle ScholarPubMed
van Schaik, C. P. & Pradhan, G. R. (2003). A model for tool use traditions in primates. Journal of Human Evolution, 44, 645–664.CrossRefGoogle ScholarPubMed
van Schaik, C. P., Deaner, R. O. & Merrill, M. Y. (1999). The conditions for tool use in primates. Journal of Human Evolution, 36, 719–741.CrossRefGoogle ScholarPubMed
Visalberghi, E., Addessi, E., Truppa, V., et al. (2009). Selection of effective stone tools by wild bearded capuchin monkeys. Current Biology, 19, 1–5.CrossRefGoogle ScholarPubMed
Wagner, A. D., Maril, A., Bjork, R. A. & Schacter, D. L. (2001). Prefrontal contributions to executive control. Neuroimage, 14, 1337–1347.CrossRefGoogle ScholarPubMed
Westergaard, G. C. & Suomi, S. J. (1994). Hierarchical complexity of combinatorial manipulation in capuchin monkeys (Cebus apella). American Journal of Primatology, 32(3), 171–176.CrossRefGoogle Scholar
Whiten, A. (1998). Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 112, 270–281.CrossRefGoogle Scholar
Whiten, A. (2000). Primate culture and social learning. Cognitive Science, 24(3), 477–508.CrossRefGoogle Scholar
Whiten, A. (2002). The imitator’s representations of the imitated. In Meltzoff, A. & Prinz, W. (eds.) The Imitative Mind (pp. 98–121). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Whiten, A. (2005). The second inheritance system of chimpanzees and humans. Nature, 437, 52–55.CrossRefGoogle ScholarPubMed
Whiten, A. & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom. In Slater, P. J. B., Rosenblatt, J. S., Beer, C. & Milinski, M. (eds.) Advances in the Study of Behaviour (pp. 239–283). New York: Academic Press.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., et al. (1999). Cultures in chimpanzees. Nature, 399, 682–685.CrossRefGoogle ScholarPubMed
Whiten, A., Horner, V., Litchfield, C. A. & Marshall-Pescini, S. (2004). How do apes ape?Learning and Behaviour, 32(1), 36–52.CrossRefGoogle ScholarPubMed
Whiten, A., Horner, V. & de Waal, F. B. M. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437, 737–740.CrossRefGoogle ScholarPubMed
Whiten, A., Flynn, E., Brown, K. & Lee, T. (2006). Imitation of hierarchical action structure by young children. Developmental Science, 9(6), 574–582.CrossRefGoogle ScholarPubMed
Whiten, A., Spiteri, A., Horner, V., et al. (2007). Transmission of multiple traditions within and between chimpanzee groups. Current Biology, 17, 1038–1043.CrossRefGoogle ScholarPubMed
Whiten, A., Schick, K. & Toth, N. (2009a). The evolution and cultural transmission of percussive technology. Journal of Human Evolution, 57, 420–435.CrossRefGoogle ScholarPubMed
Whiten, A., McGuigan, N., Marshall-Pescini, S. & Hopper, L. M. (2009b). Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philosophical Transactions of the Royal Society of London B, 364, 2417–2428.CrossRefGoogle ScholarPubMed
Wynn, T. & McGrew, W. C. (1989). An ape’s view of the Oldowan. Man, New Series, 24, 383–398.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×