Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T07:22:25.385Z Has data issue: false hasContentIssue false

56 - Meso-scale climate change in the central mountain region of Veracruz State, Mexico

from Part VI - Effects of climate variability and climate change

Published online by Cambridge University Press:  03 May 2011

V. L. Barradas
Affiliation:
Universidad Nacional Autónoma de México, Mexico
J. Cervantes-Pérez
Affiliation:
Universidad Veracruzana, Mexico
R. Ramos-Palacios
Affiliation:
Universidad Nacional Autónoma de México, Mexico
C. Puchet-Anyul
Affiliation:
Universidad Nacional Autónoma de México, Mexico
P. Vázquez-Rodríguez
Affiliation:
Universidad Nacional Autónoma de México, Mexico
R. Granados-Ramirez
Affiliation:
Universidad Nacional Autónoma de México, Mexico
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Trend analyses of precipitation and fog frequency, and energy balance measurements over typical examples of forest and grassland were made in the central mountain region of the State of Veracruz in eastern Mexico to examine the possibility of meso-scale climate change. It was hypothesized that changes in precipitation and fog frequency with elevation would reflect changes in the position of the lifting condensation level (LCL) and that these could be either positive or negative, depending on site elevation. The energy balance measurements were made to quantify the changes in sensible heat flux – considered the main driving force of cloud lifting – associated with the conversion of forest to pasture. In conclusion, the observed negative tendencies in dry-season precipitation (February) and overall fog frequency at lower elevations, as well as the positive tendencies seen at intermediate and higher elevations, are in line with a postulated shift in the LCL that may have been brought about by the increase in post-forest sensible heat fluxes.

INTRODUCTION

The Grandes Montañas region in the State of Veracruz in eastern Mexico is part of the mountain system where the eastern end of the Eje Neovolcanico and the Sierra Madre Oriental meet. One of the main features of this region is an extremely steep topographic gradient, ranging from sea level to more than 5500 m.a.s.l., over a horizontal distance of less than 100 km. The associated climatic gradients enable the occurrence of highly diverse plant communities, ranging from relatively wet montane coniferous and cloud-affected forests to (semi-)arid vegetation types (Gómez-Pompa, 1978; Barradas, 1983).

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 549 - 556
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemán, P. A. M., and García, E. (1974). The climate of Mexico. In World Survey of Climatology, Vol. 11, ed. Landsberg, H., pp. 345–391. Amsterdam, the Netherlands: Elsevier.Google Scholar
Báez, A. P., Padilla, H., Cervantes, J., Pereyra, D., and Belmont, R. (1997). Rainwater chemistry at the eastern flanks of the Sierra Madre Oriental, Veracruz, Mexico. Journal of Geophysical Research 102: 23 329–23 336.CrossRefGoogle Scholar
Barradas, V. L. (1983). Capacidad de captación de agua a partir de la niebla en Pinus montezumae Lambert, de la región de las Grandes Montañas del Estado de Veracruz. Biótica 8: 427–431.Google Scholar
Bisselink, B. (2003). Precipitation trends in Puerto Rico: Quantification and explanation of complex patterns. M.Sc. thesis, VU University Amsterdam, Amsterdam, the Netherlands.Google Scholar
Carson, D. J. (1973). The development of a dry inversion-capped convectively unstable boundary layer. Quarterly Journal of the Royal Meteorological Society 99: 450–467.CrossRefGoogle Scholar
Cavazos, T. (1997). Downscaling large-scale circulation to local winter rainfall in north-eastern Mexico. International Journal of Climatology 17: 1069–1082.3.0.CO;2-I>CrossRefGoogle Scholar
Cervantes-Pérez, J., Barradas, V. L., Tejeda-Martínez, A., and Pereyra, D. (2001). Clima urbano, bioclima humano, hidrología superficial y evaluación de riesgos por hidrometeoros en Xalapa. In Unidades ambientales urbanas: Bases metodológicas para la comprensión integrada del espacio urbano, eds. Capitanachi-Moreno, C., Barillas, E. M. Utrera, and Smith, C. B., pp. 1–57. Xalapa, Veracruz, México: Universidad Veracruzana and Instituto de Ecología, A. C.Google Scholar
Chia, L. S. (1967). Albedos of natural surfaces in Barbados. Quarterly Journal of the Royal Meteorological Society 93: 116–120.CrossRefGoogle Scholar
Culf, A. D., Esteves, J. L., Marques-Filho, A. de O., and Rocha, H. R. da (1996). Radiation, temperature and humidity over forest and pasture in Amazonia. In Amazonian Deforestation and Climate, eds. Gash, J. H. C., Nobre, C. A., Roberts, J. M., and Victoria, R. L., pp. 175–191. Chichester, UK: John Wiley.Google Scholar
Fitzjarrald, D. R. (1986). Slope winds in Veracruz. Journal of Climate and Applied Meteorology 25: 133–144.2.0.CO;2>CrossRefGoogle Scholar
García-García, F., and Montañez, R. A. (1991). Warm fog in eastern Mexico: a case study. Atmósfera 4: 53–64.Google Scholar
García-García, F., and Zarraluqui, V. (2008). A fog climatology for Mexico. Die Erde 139: 45–60.Google Scholar
Gómez-Pompa, A. (1978). Ecología de la vegetación del estado de Veracruz. México, DF: Compañía Editorial Continental, Sociedad Anónima.Google Scholar
Holwerda, F., Barradas, V. L., Cervantes, J., and Bruijnzeel, L. A. (2007). Balances hídricos y de energía de un cafetal de sombra en el centro de Veracruz, México. In Reporte técnico final del proyecto INE/A1–064/2007. Xalapa, Veracruz, México: Instituto de Ecología, and Amsterdam, the Netherlands: VU University Amsterdam.Google Scholar
Jauregui, E., Godinez, L., and Cruz, F. (1992). Aspects of heat island development in Guadalajara, Mexico. Atmospheric Environment 268: 391–396.Google Scholar
Lara-García, F. (2000). Régimen termopluviométrico y aspectos microclimáticos y bioclimáticos de Xalapa, Veracruz. B.Sc. thesis, Universidad Veracruzana, Xalapa, Veracruz, México.Google Scholar
Magaña, V. O., Vázquez, J. L., Pérez, J. L., and Pérez, J. B. (2003). Impacto of El Niño on precipitation in Mexico. Geofísica Internacional 42: 313–330.Google Scholar
Maitelli, G. T., and Wright, I. R. (1996). The climate of a riverside city in the Amazon Basin: urban–rural differences in temperature and humidity. In Amazonian Deforestation and Climate, eds. Gash, J. H. C., Nobre, C. A., Roberts, J. M., and Victoria, R. L., pp. 193–206. Chichester, UK: John Wiley.Google Scholar
Muñoz-Villers, L. E., and López-Blanco, J. (2008). Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico. International Journal of Remote Sensing 29: 71–93.CrossRefGoogle Scholar
Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A. (2003). Impact of land use on tropical montane cloud forests: sensitivity of cumulus cloud field characteristics to lowland deforestation. Journal of Geophysical Research 108 (D7): 4206–4218, doi:10.1029/2001JD001135.CrossRefGoogle Scholar
Nasrallah, H., Brazel, A., and Balling, R. C. (1990). Analysis of the Kuwait City urban heat island. International Journal of Climatology 10: 401–405.CrossRefGoogle Scholar
Nobre, C. A., Sellers, P. J., and Shukla, J. (1991). Amazonian deforestation and regional climate change. Journal of Climate 4: 957–988.2.0.CO;2>CrossRefGoogle Scholar
Ponette-González, A. G., Weathers, K. C., and Curran, L. M. (2009). Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, doi: 10.1111/j.1365–2486.2009.01985.x.CrossRef
Pounds, A. J., Fogden, M. P. L., and Campbell, J. H. (1999). Biological responses to climate change on tropical mountain. Nature 389: 611–614.CrossRefGoogle Scholar
Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A. (2006). Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of orographic cloud formation to deforestation in the plains. Journal of Geophysical Research 111: D02108, doi:10.1029/2005JD006096.CrossRefGoogle Scholar
Sperling, F. N., Washington, R., and Whittaker, R. J. (2004). Future climate change of the subtropical north Atlantic: implications for the cloud forests of Tenerife. Climatic Change 65: 103–123.CrossRefGoogle Scholar
Molen, M. K., Dolman, A. J., Waterloo, M. J., and Bruijnzeel, L. A. (2006). Climate is affected more by maritime than by continental land use change: a multiple-scale analysis. Global and Planetary Change 54: 128–149.Google Scholar
Vogelmann, H. W. (1973). Fog precipitation in the cloud forests of Eastern Mexico. BioScience 23: 96–100.CrossRefGoogle Scholar
Williams-Linera, G., Manson, R. H., and Vera, E. Isunza (2002). La fragmentación del bosque mesófilo de montaña y patrones del uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera y Bosques 8: 69–85.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×