Skip to main content Accessibility help
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T08:10:33.164Z Has data issue: false hasContentIssue false

The Neotoma Paleoecology Database

A Research Outreach Nexus

Published online by Cambridge University Press:  22 October 2018

Simon James Goring
University of Wisconsin, Madison
Russell Graham
Pennsylvania State University
Shane Loeffler
University of Minnesota
Amy Myrbo
University of Minnesota
James S. Oliver
Pennsylvania State University
Carol Ormond
Carleton College, Minnesota
John W. Williams
University of Wisconsin, Madison


Paleoecological data from the Quaternary Period (2.6 million years ago to present) provides an opportunity for educational outreach for the earth and biological sciences. Paleoecology data repositories serve as technical hubs and focal points within their disciplinary communities and so are uniquely situated to help produce teaching modules and engagement resources. The Neotoma Paleoecology Database provides support to educators from primary schools to graduate students. In collaboration with pedagogical experts, the Neotoma Paleoecology Database team has developed teaching modules and model workflows. Early education is centered on discovery; higher-level educational tools focus on illustrating best practices for technical tasks. Collaborations among pedagogic experts, technical experts and data stewards, centered around data resources such as Neotoma, provide an important role within research communities, and an important service to society, supporting best practices, translating current research advances to interested audiences, and communicating the importance of individual research disciplines.
Get access
Online ISBN: 9781108681582
Publisher: Cambridge University Press
Print publication: 29 November 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Araújo, M. B., Nogués-Bravo, D., Diniz-Filho, J. A. F., Haywood, A. M., Valdes, P. J., & Rahbek, C. (2008). Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 815.Google Scholar
Barnosky, A. D., Hadly, E. A., Gonzalez, P., Head, J., Polly, P. D., Lawing, A. M., Eronen, J. T., Ackerly, D. D., Alex, K., Biber, E., Blois, J., Brashares, J., Ceballos, G., Davis, E., Dietl, G. P., Dirzo, R., Doremus, H., Fortelius, M., Greene, H. W., Hellmann, J., Hickler, T., Jackson, S. T., Kemp, M., Koch, P. L., Kremen, C., Lindsey, E. L., Looy, C., Marshall, C. R., Mendenhall, C., Mulch, A., Mychajliw, A. M., Nowak, C., Ramakrishnan, U., Schnitzler, J., Shrestha, K. D., Solari, K., Stegner, L., Stegner, M. A., Stenseth, N. C., Wake, M. H., & Zhang, Z. (2017). Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 355, eaah4787.CrossRefGoogle ScholarPubMed
Bartlein, P., Harrison, S., Brewer, S., Connor, S., Davis, B., Gajewski, K., Guiot, J., Harrison-Prentice, T., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., & Wu, H. (2011). Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dynamics, 37, 775802.CrossRefGoogle Scholar
Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457474.CrossRefGoogle Scholar
Blei, D. M., & Smyth, P. (2017). Science and data science. Proceedings of the National Academy of Sciences, 114, 86898692.CrossRefGoogle ScholarPubMed
Blois, J. L., Feranec, R. S., & Hadly, E. A. (2008). Environmental influences on spatial and temporal patterns of body-size variation in California ground squirrels (Spermophilus beecheyi). Journal of Biogeography, 35, 602613.CrossRefGoogle Scholar
Blois, J. L., McGuire, J. L., & Hadly, E. A. (2010). Small mammal diversity loss in response to late-Pleistocene climatic change. Nature, 465, 771.Google Scholar
Brewer, S., Jackson, S. T., & Williams, J. W. (2012). Paleoecoinformatics: Applying geohistorical data to ecological questions. Trends in Ecology & Evolution, 27, 104112.Google Scholar
Davis, M. B., & Shaw, R. G., (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673679.CrossRefGoogle ScholarPubMed
Dietl, G. P., & Flessa, K. W. (2011). Conservation paleobiology: Putting the dead to work. Trends in Ecology & Evolution, 26, 3037.CrossRefGoogle ScholarPubMed
Dietl, G. P., Kidwell, S. M., Brenner, M., Burney, D. A., Flessa, K. W., Jackson, S. T., & Koch, P. L. (2015). Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annual Review of Earth and Planetary Sciences, 43, 79103.Google Scholar
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111, 84108415.CrossRefGoogle ScholarPubMed
Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B., & Robinson, G. S. (2009). Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science, 326, 11001103.CrossRefGoogle ScholarPubMed
Goring, S., Dawson, A., Simpson, G., Ram, K., Graham, R., Grimm, E., & Williams, J. (2015). neotoma: A programmatic interface to the Neotoma Paleoecological Database. Open Quaternary, 1.Google Scholar
Grimm, E. (2008). Neotoma: An ecosystem database for the Pliocene, Pleistocene, and Holocene. Illinois State Museum Scientific Papers E Series, 1.Google Scholar
Grimm, E. C., Blaauw, M., Buck, C., & Williams, J. W. (2014). Age models, chronologies, and databases workshop: Complete report and recommendations. PAGES Magazine, 22, 104.CrossRefGoogle Scholar
Harrison, M., Baldwin, S., Caffee, M., Gehrels, G., Schoene, B., Shuster, D., & Singer, B. (2016). Geochronology: It’s about time. Eos, 97, 1213.Google Scholar
Haslett, J., & Parnell, A. C. (2008). A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics), 57(4), 399418.Google Scholar
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99107.Google Scholar
Hunter, A.-B., Laursen, S. L., & Seymour, E. (2007). Becoming a scientist: The role of undergraduate research in students’ cognitive, personal, and professional development. Science Education, 91, 3674.Google Scholar
Juggins, S. (2013). Quantitative reconstructions in palaeolimnology: New paradigm or sick science? Quaternary Science Reviews, 64, 2032.CrossRefGoogle Scholar
Juggins, S. (2017). rioja: Analysis of Quaternary Science Data, R package version (0.9–15.1). (, accessed 15 June 2018.Google Scholar
Kapoor, S., Mojsilovic, A., Strattner, J. N., & Varshney, K. R. (2015). From open data ecosystems to systems of innovation: A journey to realize the promise of open data, in Bloomberg Data for Good Exchange Conference,, accessed 1 August 2018.Google Scholar
Latałowa, M., & Knaap, W. O. van der (2006). Late Quaternary expansion of Norway spruce Picea abies (l.) Karst in Europe according to pollen data. Quaternary Science Reviews, 25, 27802805.Google Scholar
Laursen, S., Hunter, A.-B., Seymour, E., Thiry, H., & Melton, G. (2010). Undergraduate research in the sciences: Engaging students in real science. San Francisco: John Wiley & Sons.Google Scholar
Lopatto, D. (2010). Undergraduate research as a high-impact student experience. Peer Review, 12, 27.Google Scholar
Manduca, C., & Mogk, D. (2002). Using data in undergraduate science classrooms, in Final Report of the National Science Digital Library Workshop,, accessed 1 August 2018.Google Scholar
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., & Brewer, S. (2018). Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554, 92.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., Rouco, J. G., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., & Timmermann, A. (2013). Information from paleoclimate archives. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Mathewes, R. W., & Heusser, L. E. (1981). A 12 000 year palynological record of temperature and precipitation trends in southwestern British Columbia. Canadian Journal of Botany, 59, 707710.Google Scholar
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., Kreveld, S. van, Holmgren, , Lee-Thorp, K., Rosqvist, J., Rack, G. F., Staubwasser, M., Schneider, R. R., & Steig, E. J. (2004). Holocene climate variability. Quaternary Research, 62, 243255.CrossRefGoogle Scholar
North Greenland Ice Core Project (NGRIP) members (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151.Google Scholar
Ordonez, A., & Svenning, J.-C. (2017). Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Scientific Reports, 7, 42988.Google Scholar
Resnick, I., Atit, K., & Shipley, T. (2012). Teaching geologic events to understand geologic time. In Kastens, K. A. and Manduca, C. A., eds., Earth and Mind II: A Synthesis of Research on Thinking and Learning in the Geosciences. Boulder, CO: Geological Society of America, pp. 4143.Google Scholar
Resnick, I., Shipley, T. F., Newcombe, N., Massey, C., & Wills, T. (2011). Progressive alignment of geologic time,, accessed 1 August 2018.Google Scholar
Simpson, G. L. (2007). Analogue methods in palaeoecology: Using the analogue package. Journal of Statistical Software, 22, 129.CrossRefGoogle Scholar
Viau, A., Ladd, M., & Gajewski, K. (2012). The climate of North America during the past 2000 years reconstructed from pollen data. Global and Planetary Change, 84, 7583.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müllerg, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., & Widmannm, M. (2008). Mid-to late Holocene climate change: An overview. Quaternary Science Reviews, 27, 17911828.CrossRefGoogle Scholar
Williams, J. W., Grimm, E. C., Blois, J., Charles, D. F., Davis, E., Goring, S. J., Graham, R. W., Smith, A. J., Anderson, M., Arroyo-Cabrales, J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland, P. I., Curry, B. B., Giesecke, T., Jackson, S. T., Latorre, C., Nichols, J., Purdum, T., Roth, R. E., Stryker, M., & Takahara, H. (2018). The Neotoma Paleoecology Database: A multi-proxy, international community-curated data resource. Quaternary Research, 89, 156177.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Neotoma Paleoecology Database
Available formats

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Neotoma Paleoecology Database
Available formats

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Neotoma Paleoecology Database
Available formats