This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
B. C. Sakiadis , Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two-dimensional and axisymmetric flow, AIChE J., 7(1) (1961), pp. 26–28.

[2]
B. C. Sakiadis , Boundary-layer behavior on continuous solid surfaces: II. the boundary layer on a continuous flat surface, AIChE J., 7(2) (1961), pp. 221–225.

[3]
B. C. Sakiadis , Boundary-layer behavior on continuous solid surfaces: III. the boundary layer on a continuous cylindrical surface, AIChE J., 7(3) (1961), pp. 467–472.

[4]
F. Tsou , E. Sparrow and R. Goldstein , Flow and heat transfer in the boundary layer on a continuous moving surface, Int. J. Heat Mass Transfer, 10(2) (1967), pp. 219–235.

[5]
L. Crane , Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4) (1970) pp. 645–647.

[6]
A. Chakrabarti and A. S. Gupta , Hydromagnetic flow and heat transfer over a stretching sheet, Quarterly Appl. Math., 37 (1979), pp. 73–78.

[7]
L. J. Grubka and K. M. Bobba , Heat transfer characteristics of a continuous, stretching surface with variable temperature, J. Heat Transfer, 107 (1985), pp. 248–250.

[8]
H. Andersson , K. Bech and B. Dandapat , Magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Int. J. Nonlinear Mech., 27(6) (1992), pp. 929–936.

[9]
C. H. Chen , Laminar mixed convection adjacent to vertical, continuously stretching sheets, Heat Mass Transfer, 33(5-6) (1998), pp. 471–476.

[12]
M. S. Abel and N. Mahesha , Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Model., 32(10) (2008), pp. 1965–1983.

[13]
A. Aziz , A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simulation, 14(4) (2009), pp. 1064–1068.

[16]
H. U. Kang , S. H. Kim and J. M. Oh , Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19(3) (2006), pp. 181–191.

[18]
V. Rudyak , A. Belkin and E. Tomilina , On the thermal conductivity of nanofluids, Tech. Phys. Lett., 36(7) (2010), pp. 660–662.

[19]
A. Aziz , W. Khan and I. Pop , Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms, Int. J. Thermal Sci., 56(0) (2012), pp. 48–57.

[20]
X.-Q. Wang and A. S. Mujumdar , Heat transfer characteristics of nanofluids: a review, Int. J. Thermal Sci., 46(1) (2007), pp. 1–19.

[21]
D. Wen and Y. Ding , Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 47(24) (2004), pp. 5181–5188.

[22]
Y. Xuan and Q. Li , Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21(1) (2000), pp. 58–64.

[23]
J. Albadr , S. Tayal and M. Alasadi , Heat transfer through heat exchanger using al2o3 nanofluid at different concentrations, Case Studies Thermal Eng., 1(1) (2013), pp. 38–44.

[24]
S. Abbasbandy , A numerical solution of blasius equation by adomian's decomposition method and comparison with homotopy perturbation method, Chaos, Solitons & Fractals, 31(1) (2007), pp. 257–260.

[25]
N. S. Elgazery , Numerical solution for the falknerskan equation, Chaos, Solitons & Fractals, 35(4) (2008), pp. 738–746.

[26]
B. L. Kuo , Heat transfer analysis for the Falkner–Skan wedge flow by the differential transformation method, Int. J. Heat Mass Transfer, 48(2324) (2005), pp. 5036–5046.

[34]
F. Schieweck , A-stable discontinuous Galerkin-Petrov time discretization of higher order, J. Numer. Math., 18 (2010), pp. 25–57.

[36]
S. Hussain , F. Schieweck and S. Turek , Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, J. Numer. Math., 19(1) (2011), pp. 41–61.

[37]
E. Haile and B. Shankar , Heat and mass transfer through a porous media of MHD flow of nanofluids with thermal radiation, viscous dissipation and chemical reaction effects, American Chemical Science J., 4 (2014), pp. 828–846.

[38]
M. Hamad , Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field, Int. Commun. Heat Mass Transfer, 38(4) (2011), pp. 487–492.

[39]
P. Kameswaran , M. Narayana , P. Sibanda and P. Murthy , Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects, Int. J. Heat Mass Transfer, 55 (2526) (2012), pp. 7587–7595.

[41]
R. Cess , The interaction of thermal radiation with free convection heat transfer, Int. J. Heat Mass Transfer, 9(11) (1966), pp. 1269–1277.

[42]
V. S. Arpaci , Effect of thermal radiation on the laminar free convection from a heated vertical plate, Int. J. Heat Mass Transfer, 11(5) (1968), pp. 871–881.

[43]
E. Cheng and M. Özişik , Radiation with free convection in an absorbing, emitting and scattering medium, Int. J. Heat Mass Transfer, 15(6) (1972), pp. 1243–1252.

[44]
M. Hossain and H. Takhar , Radiation effect on mixed convection along a vertical plate with uniform surface temperature, Heat Mass Transfer, 31(4) (1996), pp. 243–248.

[45]
S. Siddiqa , M. Hossain and S. C. Saha , The effect of thermal radiation on the natural convection boundary layer flow over a wavy horizontal surface, Int. J. Thermal Sci., 84 (2014), pp. 143–150.