Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T10:07:56.768Z Has data issue: false hasContentIssue false

Central limit theorem for a birth–growth model with poisson arrivals and random growth speed

Published online by Cambridge University Press:  19 January 2024

Chinmoy Bhattacharjee*
Affiliation:
University of Hamburg
Ilya Molchanov*
Affiliation:
University of Bern
Riccardo Turin*
Affiliation:
Swiss Re
*
*Postal address: Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany. Email address: chinmoy.bhattacharjee@uni-hamburg.de
**Postal address: IMSV, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland. Email address: ilya.molchanov@unibe.ch
***Postal address: Swiss Re Management Ltd, Mythenquai 50/60, 8022 Zurich, Switzerland. Email address: Riccardo_Turin@swissre.com

Abstract

We consider Gaussian approximation in a variant of the classical Johnson–Mehl birth–growth model with random growth speed. Seeds appear randomly in $\mathbb{R}^d$ at random times and start growing instantaneously in all directions with a random speed. The locations, birth times, and growth speeds of the seeds are given by a Poisson process. Under suitable conditions on the random growth speed, the time distribution, and a weight function $h\;:\;\mathbb{R}^d \times [0,\infty) \to [0,\infty)$, we prove a Gaussian convergence of the sum of the weights at the exposed points, which are those seeds in the model that are not covered at the time of their birth. Such models have previously been considered, albeit with fixed growth speed. Moreover, using recent results on stabilization regions, we provide non-asymptotic bounds on the distance between the normalized sum of weights and a standard Gaussian random variable in the Wasserstein and Kolmogorov metrics.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baccelli, F. and Błaszczyszyn, B. (2010). Stochastic Geometry and Wireless Networks, Vol. I, Theory (Foundations and Trends in Networking 3). Now Foundations and Trends, Paris.Google Scholar
Baryshnikov, Y. and Yukich, J. E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Prob. 15, 213253.Google Scholar
Bhattacharjee, C. and Molchanov, I. (2022). Gaussian approximation for sums of region-stabilizing scores. Electron. J. Prob. 27, article no. 111, 27 pp.Google Scholar
Bollobás, B. and Riordan, O. (2008). Percolation on random Johnson–Mehl tessellations and related models. Prob. Theory Relat. Fields 140, 319343.Google Scholar
Chiu, S. N. and Quine, M. P. (1997). Central limit theory for the number of seeds in a growth model in $\textbf{R}^d$ with inhomogeneous Poisson arrivals. Ann. Appl. Prob. 7, 802814.CrossRefGoogle Scholar
Chiu, S. N. and Quine, M. P. (2001). Central limit theorem for germination-growth models in $\Bbb R^d$ with non-Poisson locations. Adv. Appl. Prob. 33, 751755.Google Scholar
Chiu, S. N., Stoyan, D., Kendall, W. S. and Mecke, J. (2013). Stochastic Geometry and Its Applications, 3rd edn. John Wiley, Chichester.CrossRefGoogle Scholar
Eichelsbacher, P., Raič, M. and Schreiber, T. (2015). Moderate deviations for stabilizing functionals in geometric probability. Ann. Inst. H. Poincaré Prob. Statist. 51, 89128.Google Scholar
Englund, G. (1981). A remainder term estimate for the normal approximation in classical occupancy. Ann. Prob. 9, 684692.CrossRefGoogle Scholar
Heinrich, L. and Molchanov, I. (1994). Some limit theorems for extremal and union shot-noise processes. Math. Nachr. 168, 139159.CrossRefGoogle Scholar
Kolmogorov, A. N. (1937). On the statistical theory of metal crystallization. Izv. Akad. Nauk SSSR Ser. Mat. 3, 355360.Google Scholar
Lachièze-Rey, R. (2019). Normal convergence of nonlocalised geometric functionals and shot-noise excursions. Ann. Appl. Prob. 29, 26132653.Google Scholar
Lachièze-Rey, R., Schulte, M. and Yukich, J. E. (2019). Normal approximation for stabilizing functionals. Ann. Appl. Prob. 29, 931993.Google Scholar
Last, G., Peccati, G. and Schulte, M. (2016). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Prob. Theory Relat. Fields 165, 667723.Google Scholar
Last, G. and Penrose, M. (2018). Lectures on the Poisson Process. Cambridge University Press.Google Scholar
Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley, Chichester.Google Scholar
Penrose, M. D. and Yukich, J. E. (2002). Limit theory for random sequential packing and deposition. Ann. Appl. Prob. 12, 272301.Google Scholar
Penrose, M. D. and Yukich, J. E. (2003). Weak laws of large numbers in geometric probability. Ann. Appl. Prob. 13, 277303.CrossRefGoogle Scholar
Schneider, R. (2014). Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press.Google Scholar
Schreiber, T. and Yukich, J. E. (2008). Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Prob. 36, 363396.CrossRefGoogle Scholar