Skip to main content
×
Home
    • Aa
    • Aa

The Statistical Analysis of Roll Call Data

  • JOSHUA CLINTON (a1), SIMON JACKMAN (a2) and DOUGLAS RIVERS (a2)
Abstract

We develop a Bayesian procedure for estimation and inference for spatial models of roll call voting. This approach is extremely flexible, applicable to any legislative setting, irrespective of size, the extremism of the legislators' voting histories, or the number of roll calls available for analysis. The model is easily extended to let other sources of information inform the analysis of roll call data, such as the number and nature of the underlying dimensions, the presence of party whipping, the determinants of legislator preferences, and the evolution of the legislative agenda; this is especially helpful since generally it is inappropriate to use estimates of extant methods (usually generated under assumptions of sincere voting) to test models embodying alternate assumptions (e.g., log-rolling, party discipline). A Bayesian approach also provides a coherent framework for estimation and inference with roll call data that eludes extant methods; moreover, via Bayesian simulation methods, it is straightforward to generate uncertainty assessments or hypothesis tests concerning any auxiliary quantity of interest or to formally compare models. In a series of examples we show how our method is easily extended to accommodate theoretically interesting models of legislative behavior. Our goal is to provide a statistical framework for combining the measurement of legislative preferences with tests of models of legislative behavior.

Copyright
Corresponding author
Assistant Professor, Department of Politics, Princeton University, Princeton, NJ 08540 (clinton@princeton.edu).
Associate Professor and Director of the Political Science Computational Laboratory, Department of Political Science, Stanford University, Stanford, CA 94305-6044 (jackman@stanford.edu).
Professor, Department of Political Science, Stanford University, Stanford, CA 94305-6044 (rivers@stanford.edu).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

American Political Science Review
  • ISSN: 0003-0554
  • EISSN: 1537-5943
  • URL: /core/journals/american-political-science-review
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×