Skip to main content Accessibility help

Compensatory growth feeding strategy does not overcome negative effects on growth and carcass composition of low birth weight pigs

  • J. G. Madsen (a1) and G. Bee (a1)


The aim of this study was to evaluate whether the compensatory growth feeding strategy could be a suitable solution for overcoming the negative effects on growth, carcass composition and meat quality of low birth weight pigs. Forty-two Swiss Large White barrows from 21 litters were selected at weaning and categorized into either being light (L; >0.8 and <1.3 kg) or heavy (H; >1.7 kg) birth weight pigs. From 27.8 kg BW, pigs were assigned within birth weight group to one of three feeding groups: AA: ad libitum access to the grower and finisher diet, RR: restricted access to the grower and finisher diet or RA: restricted access to the grower diet and ad libitum access to the finisher diet. At slaughter, the longissimus (LM) and semitendinosus (STM) muscles were removed from the right side of the carcass. Weight, girth and length of the STM and the LM area were determined after muscle excision. Carcass characteristics and meat quality traits were assessed. Using mATPase histochemistry, myofibre size and myofibre type distribution were determined in the LM and STM. Because of longer days on feed, total feed intake was greater (P<0.01) and feed efficiency was lower (P<0.01) in L than H barrows. Regardless of the birth weight group, AA and RA barrows grew faster (P<0.05) than RR barrows. During the compensatory growth period, RA barrows grew faster (P<0.05) than AA or RR barrows. Growth efficiency did not differ between RA and RR barrows but was greater (P<0.05) compared with AA barrows. Carcasses of L barrows were fatter as indicated by the lower (P⩽≤0.05) lean meat and greater (P⩽0.02) omental and subcutaneous fat percentage. Lean meat percentage was lower (P⩽0.05) in AA and RA than RR barrows. These differences caused by ad libitum feed access tended to be greater (feeding regime × birth weight group interaction; P<0.08) in L than H barrows. In L barrows, slow oxidative, fast oxidative glycolytic and overall average myofibre size of the LM and the fast glycolytic myofibres and overall average myofibre size of the dark portion of the STM were larger (P⩽0.03) than in H barrows. The study revealed that the compensatory growth feeding strategy was inadequate in overcoming the disadvantages of low birth weight.


Corresponding author


Hide All
Agroscope Liebefeld Posieux Research Station (ALP) 2012. Fütterungsempfehlungen und Nährwerttabellen für Schweine 3 Lehrmittel Zentrale, Zollikofen, Switzerland.
Attig, L, Djiane, J, Gertler, A, Rampin, O, Larcher, T, Boukthir, S, Anton, PM, Madec, JY, Gourdou, I and Abdennebi-Najar, L 2008. Study of hypothalamic leptin receptor expression in low-birth-weight piglets and effects of leptin supplementation on neonatal growth and development. American Journal of Physiology – Endocrinology and Metabolism 295, E1117E1125.
Beaulieu, AD, Aalhus, JL, Williams, NH and Patience, JF 2010. Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork. Journal of Animal Science 88, 27672778.
Bee, G, Guex, G and Herzog, W 2004. Free-range rearing of pigs during the winter: adaptations in muscle fiber characteristics and effects on adipose tissue composition and meat quality traits. Journal of Animal Science 82, 12061218.
Bérard, J, Kreuzer, M and Bee, G 2008. Effect of litter size and birth weight on growth, carcass and pork quality, and their relationship to postmortem proteolysis. Journal of Animal Science 86, 23572368.
Bérard, J, Kreuzer, M and Bee, G 2010a. In large litters birth weight and gender is decisive for growth performance but less for carcass and pork quality traits. Meat Science 86, 845851.
Bérard, J, Pardo, CE, Bethaz, S, Kreuzer, M and Bee, G 2010b. Intra-uterine crowding decreases average birth weight and affects muscle fiber hyperplasia in piglets. Journal of Animal Science 88, 32423250.
Bérard, J, Kalbe, C, Lösel, D, Tuchscherer, A and Rehfeldt, C 2011. Potential sources of early-postnatal increase in myofibre number in pig skeletal muscle. Histochemistry and Cell Biology 136, 217225.
Campos, P, Silva, B, Donzele, J, Oliveira, R and Knol, E 2012. Effects of sow nutrition during gestation on within-litter birth weight variation: a review. Animal 6, 797806.
da Costa, N, Blackley, R, Alzuherri, H and Chang, KC 2002. Quantifying the temporospatial expression of postnatal porcine skeletal myosin heavy chain genes. Journal of Histochemistry & Cytochemistry 50, 353364.
Fix, JS, Cassady, JP, Holl, JW, Herring, WO, Culbertson, MS and See, MT 2010. Effect of piglet birth weight on survival and quality of commercial market swine. Livestock Science 132, 98106.
Foxcroft, GR, Dixon, WT, Novak, S, Putman, CT, Town, SC and Vinsky, MDA 2006. The biological basis for prenatal programming of postnatal performance in pigs. Journal of Animal Science 84, E105E112.
Goll, DE, Neti, G, Mares, SW and Thompson, VF 2008. Myofibrillar protein turnover: the proteasome and the calpains. Journal of Animal Science 86, E19E35.
Gondret, F, Lefaucheur, L, Juin, H, Louveau, I and Lebret, B 2006. Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs. Journal of Animal Science 84, 93103.
Gondret, F, Perruchot, MH, Tacher, S, Bérard, J and Bee, G 2011. Differential gene expressions in subcutaneous adipose tissue pointed to a delayed adipocytic differentiation in small pig fetuses compared to their heavier siblings. Differentiation 81, 253260.
Gondret, F, Lefaucheur, L, Louveau, I, Lebret, B, Pichodo, X and Le Cozler, Y 2005. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livestock Production Science 93, 137146.
Honikel, KO 1998. Reference methods for the assessment of physical characteristics of meat. Meat Science 49, 447457.
Huff Lonergan, E, Zhang, W and Lonergan, SM 2010. Biochemistry of postmortem muscle – lessons on mechanisms of meat tenderization. Meat Science 86, 184195.
Lösel, D, Kalbe, C and Rehfeldt, C 2009. l-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight. Journal of Animal Science 87, 22162226.
Medhurst, AD, Harrison, DC, Read, SJ, Campbell, CA, Robbins, MJ and Pangalos, MN 2000. The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. Journal of Neuroscience Methods 98, 920.
Oksbjerg, N and Therkildsen, M 2007. Compensatory growth in pigs: effects on performance, protein turnover and meat quality. In Paradigms in pig science (ed. J Wiseman, MA Varley, S McOrist and B Kemp), pp. 417426. Nottingham University Press.
Oksbjerg, N, Sorensen, MT and Vestergaard, M 2002. Compensatory growth and its effect on muscularity and technological meat quality in growing pigs. Acta Agriculturae Scandinavica Section A-Animal Science 52, 8590.
Oksbjerg, N, Petersen, JS, Sorensen, IL, Henckel, P, Vestergaard, M, Ertbjerg, P, Moller, AJ, Bejerholm, C and Stoier, S 2000. Long-term changes in performance and meat quality of Danish Landrace pigs: a study on a current compared with an unimproved genotype. Animal Science 71, 8192.
Pardo, CE, Bérard, J, Kreuzer, M and Bee, G 2013. Intrauterine crowding in pigs impairs formation and growth of secondary myofibers. Animal 7, 430438.
Quesnel, H, Brossard, L, Valancogne, A and Quiniou, N 2008. Influence of some sow characteristics on within-litter variation of piglet birth weight. Animal 2, 18421849.
Quiniou, N, Dagorn, J and Gaudré, D 2002. Variation of piglets' birth weight and consequences on subsequent performance. Livestock Production Science 78, 6370.
Rehfeldt, C and Kuhn, G 2006. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. Journal of Animal Science 84, E113E123.
Rehfeldt, C, Kuhn, G, Fiedler, I and Ender, K 2004. Muscle fiber characteristics are important in the relationship between birth weight and carcass quality. Journal of Animal Science 82 (suppl.1), 250.
Solomon, MB and Montgomery, AR 1988. Comparison of methods for quantifying fiber types in skeletal muscle tissue. Journal of Food Science 53, 973974.
Ward, SS and Stickland, NC 1991. Why are slow and fast muscles differentially affected during prenatal undernutrition? Muscle Nerve 14, 259267.
Williams, PJ, Marten, N, Wilson, V, Litten-Brown, JC, Corson, AM, Clarke, L, Symonds, ME and Mostyn, A 2009. Influence of birth weight on gene regulators of lipid metabolism and utilization in subcutaneous adipose tissue and skeletal muscle of neonatal pigs. Reproduction 138, 609617.
Wu, G, Bazer, FW, Wallace, JM and Spencer, TE 2006. Board-invited review: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science 84, 23162337.


Type Description Title
Supplementary materials

Madsen and Bee Supplementary Material
Table S1

 Word (17 KB)
17 KB

Compensatory growth feeding strategy does not overcome negative effects on growth and carcass composition of low birth weight pigs

  • J. G. Madsen (a1) and G. Bee (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed