Skip to main content Accessibility help
×
Home

PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium

  • S. Sadet (a1), C. Martin (a1), B. Meunier (a1) and D. P. Morgavi (a1)

Abstract

Bacteria attached to the rumen epithelium (or epimural community) are not well characterised and their role in rumen functioning is not totally understood. There is just one published report of a clone library from one cow that suggests that this epimural community differs from the bacteria associated with the rumen digestive contents. However, this time-consuming approach is not adapted for examining microbial population changes in groups of animals. In in vivo studies, when samples from several animals have to be analysed simultaneously, a simpler technique has to be used. In this study, a genetic fingerprinting technique, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), was used to characterise the structure of the bacterial population attached to the rumen epithelium. This community was compared with that present in the solid and liquid phases of rumen content under two contrasting diets. Rumen samples were obtained from four forage-fed and four high-concentrate-fed (80 : 20, wheat grain : hay) 5-month-old lambs. After slaughter, samples from five epithelial sites and the solid and liquid digesta phases were taken for DNA extraction and analysis. Bacterial communities were profiled by PCR-DGGE using bacterial-specific 16S rDNA primers. Analysis of the fingerprint revealed that the epithelial community differed from those of rumen content in both diets. As expected, the nature of the feed influenced the bacterial communities from the solid and liquid rumen phases but no diet effect was observed in the rumen epithelial profiles suggesting a strong host effect on this bacterial population. Additionally, no differences were observed among the five epithelial sampling sites taken from each animal. The profile of the bacterial population attached to the rumen epithelium presented a high inter-animal variation, whether this difference has an influence in the function of this community remains to be determined.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Anonymous 1988. Arrêté du 19 avril 1988 fixant les conditions d’attribution de l’autorisation d’expérimenter. Journal Officiel de la République Française, pp. 5608–5610.
Bauchop, T, Clarke, RT, Newhook, JC 1975. Scanning electron microscope study of bacteria associated with the rumen epithelium of sheep. Applied Microbiology 30, 668675.
Bell, T, Newman, JA, Silverman, BW, Turner, SL, Lilley, AK 2005. The contribution of species richness and composition to bacterial services. Nature 436, 11571160.
Cardinale, BJ, Palmer, MA, Collins, SL 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426429.
Cheng, KJ, Costerton, JW 1986. Microbial adhesion and colonization within the digestive tract. Society for Applied Bacteriology Symposium Series 13, 239261.
Cheng, KJ, McAllister, TA 1997. The rumen microbial ecosystem. In Compartimentation in the rumen (ed. CS Stewart), pp. 492522. Blackie Academic and Professional, London.
Cheng, KJ, McCowan, RP, Costerton, JW 1979. Adherent epithelial bacteria in ruminants and their roles in digestive tract function. The American Journal of Clinical Nutrition 32, 139148.
Cho, SJ, Cho, KM, Shin, EC, Lim, WJ, Hong, SY, Choi, BR, Kang, JM, Lee, SM, Kim, YH, Kim, H, Yun, HD 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. Journal of Microbiology and Biotechnology 16, 92101.
Czerkawski, DE 1986. Control of digestion and metabolism in ruminants. In Degradation of solid feeds in the rumen: spatial distribution of microbial activity and its consequences (ed. A Dobson), pp. 158172. Prentice-Hall, Englewood Cliffs, NJ.
Dehority, BA, Grubb, JA 1981. Bacterial population adherent to the epithelium on the roof of the dorsal rumen of sheep. Applied and Environmental Microbiology 41, 14241427.
Edwards, JE, Bequette, BJ, McKain, N, McEwan, NR, Wallace, RJ 2005. Influence of flavomycin on microbial numbers, microbial metabolism and gut tissue protein turnover in the digestive tract of sheep. The British Journal of Nutrition 94, 6470.
Friswell, M, Gilbert, P, Allison, D, Stratford, I, Telfer, B, Mcbain, A 2006. Murine gut microbiome: nature and nurture. Reproduction, Nutrition, Development 46, S1S138, S6.
Fromin, N, Hamelin, J, Tarnawski, S, Roesti, D, Jourdain-Miserez, K, Forestier, N, Teyssier-Cuvelle, S, Gillet, F, Aragno, M, Rossi, P 2002. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environmental Microbiology 4, 634643.
Horner-Devine, MC, Lage, M, Hughes, JB, Bohannan, BJ 2004. A taxa–area relationship for bacteria. Nature 432, 750753.
Janse, I, Bok, J, Zwart, G 2004. A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. Journal of Microbiological Methods 57, 279281.
Kropf, S, Heuer, H, Gruning, M, Smalla, K 2004. Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. Journal of Microbiological Methods 57, 187195.
Larue, R, Yu, ZT, Parisi, VA, Egan, AR, Morrison, M 2005. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environmental Microbiology 7, 530543.
Loisel, P, Harmand, J, Zemb, O, Latrille, E, Lobry, C, Delgenes, JP, Godon, JJ 2006. Denaturing gradient electrophoresis (DGE) and singlestrand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity. Environmental Microbiology 8, 720731.
Martin, C, Fonty, G, Michalet-Doreau, B 2002. Factors affecting the fibrolytic activity of the digestive microbial ecosystems in ruminants. In Gastrointestinal microbiology in animals (ed. SA Martin), pp. 117. Research Signpost, Trivandrum, Kerala, India.
McCowan, RP, Cheng, KJ, Costerton, JW 1980. Adherent bacterial populations on the bovine rumen wall: distribution patterns of adherent bacteria. Applied and Environmental Microbiology 39, 233241.
Mead, LJ, Jones, GA 1981. Isolation and presumptive identification of adherent epithelial bacteria (“epimural” bacteria) from the ovine rumen wall. Applied and Environmental Microbiology 41, 10201028.
Michalet-Doreau, B, Fernandez, I, Peyron, C, Millet, L, Fonty, G 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reproduction Nutrition Development 41, 187194.
Mitsumori, M, Ajisaka, N, Tajima, K, Kajikawa, H, Kurihara, M 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Letters in Applied Microbiology 35, 251255.
Muyzer, G, De Waal, EC, Uitterlinden, AG 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59, 695700.
Odum, EP 1971. Fundamentals of ecology. WB Saunders Company, Philadelphia, USA.
Pace, NR 1997. A molecular view of microbial diversity and the biosphere. Science 276, 734740.
Pedros-Alio, C 2006. Marine microbial diversity: can it be determined? Trends in Microbiology 14, 257263.
Roussel, Y, Wilks, M, Harris, A, Mein, C, Tabaqchali, S 2005. Evaluation of DNA extraction methods from mouse stomachs for the quantification of H. pylori by real-time PCR. Journal of Microbiological Methods 62, 7181.
Savelkoul, P, Aarts, H, de Haas, J, Dijkshoorn, L, Duim, B, Otsen, M, Rademaker, J, Schouls, L, Lenstra, J 1999. Amplified-fragment length polymorphism analysis: the state of an art. Journal of Clinical Microbiology 37, 30833091.
Stahl, DA, Flesher, B, Mansfield, HR, Montgomery, L 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Applied and Environmental Microbiology 54, 10791084.
Statistical Analysis Systems Institute 1999. SAS version 8. SAS Institute Inc., Cary, USA.
Wallace, RJ, Cheng, KJ, Dinsdale, D, Ørskov, ER 1979. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279, 424426.
Yu, Z, Morrison, M 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808812.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed