Skip to main content Accessibility help
×
Home

Simulated amino acid requirements of growing pigs differ between current factorial methods

  • A. Remus (a1) (a2), L. Hauschild (a2) and C. Pomar (a1) (a2)

Abstract

Significant differences in the estimation of amino acid requirements exist between the available factorial methods. This study aimed to compare current factorial models used to estimate the individual and population standardised ileal digestible (SID) lysine (Lys) requirements of growing pigs during a 26-day feeding phase. Individual daily feed intake and BW data from 40 high-performance pigs (25-kg initial BW) were smoothed by linear regression. Body weight gain was constant (regression slope not different from 0) for all the pigs. The CV of the SID Lys requirements ranged from 22% at the beginning of the trial to 8% at the end. The population Brazilian tables (BT-2017) and National Research Council (NRC-2012) SID Lys requirements for the average pig were 16% higher than the average requirement estimated by the individual precision-feeding model (IPF), but similar to the estimated for the population assuming that population requirements are those of the 80th-percentile pig of the population (IPF-80). Meaning that, the IPF-80, BT-2017, and NRC-2012 models would yield similar recommendations when pigs are group-fed in conventional multi-phase systems. Additionally, the IPF-80 estimates are independent of the phase length, whereas the BT-2017 and NRC-2012 models use average population values in the middle of the feeding phase for the calculations and therefore, conventional requirement estimations decrease as the length of the feeding phase increases. In conclusion, the BT-2017 and NRC-2012 methods were calibrated for maximum population responses, which explains why these methods yield higher values than those estimated for the average pig by the IPF model. This study shows the limitations of conventional factorial methods to estimate amino acid requirements for precision-feeding systems.

Copyright

Corresponding author

References

Hide All
Andretta, I, Pomar, C, Rivest, J, Pomar, J and Radünz, J 2016. Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs. Animal 10, 11371147.
Brossard, L, Dourmad, J-Y, Rivest, J and van Milgen, J 2009. Modelling the variation in performance of a population of growing pig as affected by lysine supply and feeding strategy. Animal 3, 11141123.
Brossard, L, Vautier, B, van Milgen, J, Salaun, Y and Quiniou, N 2014. Comparison of in vivo and in silico growth performance and variability in pigs when applying a feeding strategy designed by simulation to control the variability of slaughter weight. Animal Production Science 54, 19391945.
Cloutier, L, Létourneau-Montminy, M-P, Bernier, J, Pomar, J and Pomar, C 2016. Effect of a lysine depletion–repletion protocol on the compensatory growth of growing-finishing pigs. Journal of Animal Science 94, 2551–2266.
Cloutier, L, Pomar, C, Létourneau Montminy, MP, Bernier, JF and Pomar, J 2015. Evaluation of a method estimating real-time individual lysine requirements in two lines of growing–finishing pigs. Animal 9, 561568.
de Lange, CFM, Morel, PCH and Birkett, SH 2003. Modeling chemical and physical body composition of the growing pig. Journal of Animal Science 81, E159E165.
Hauschild, L, Lovatto, PA, Pomar, J and Pomar, C 2012. Development of sustainable precision farming systems for swine: estimating real-time individual amino acid requirements in growing-finishing pigs. Journal of Animal Science 90, 22552263.
Hauschild, L, Pomar, C and Lovatto, PA 2010. Systematic comparison of the empirical and factorial methods used to estimate the nutrient requirements of growing pigs. Animal 4, 714723.
Heyer, A and Lebret, B 2007. Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality 1. Journal of Animal Science 85, 769778.
Lovatto, PA, Sauvant, D, Noblet, J, Dubois, S and Van Milgen, J 2006. Effects of feed restriction and subsequent refeeding on energy utilization in growing pigs. Journal of Animal Science 84, 33293336.
Mahan, DC and Shields, RC Jr 1998. Essential and nonessential amino acid composition of pigs from birth to 145 kilograms of body weight, and comparison to other studies. Journal of Animal Science 76, 513521.
Möhn, S, Gillis, AM, Moughan, PJ and de Lange, CFM 2000. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. Journal of Animal Science 78, 15101519.
National Research Council 2012. Nutrient requirements of swine, 11th revised edition. National Academies Press, Washington, DC, USA.
Pomar, C, Kyriazakis, I, Emmans, GC and Knap, PW 2003. Modeling stochasticity: dealing with populations rather than individual pigs. Journal of Animal Science 81, E178E186.
Pomar, C, Pomar, J, Rivest, J, Cloutier, L, Letourneau-Montminy, MP, Andretta, I and Hauschild, L 2015. Estimating real-time individual amino acid requirements in growing-finishing pigs: towards a new definition of nutrient requirements in growing-finishing pigs? In Nutritional modelling for pigs and poultry (ed. Sakomura, NK, Gous, RM, Kyriazakis, I and Hauschild, L), pp. 157174. CABI Publishing, Wallingford, UK.
Quiniou, N, Vautier, B, Salaün, Y, Van Milgen, J and Brossard, L 2013. Modélisation de l’effet de la stratégie alimentaire et du contexte de prix des matières premières sur les performances moyennes, leur variabilité et les rejets azotés à l’échelle d’une population de porcs. Journées de la Recherche Porcine 45, 155160.
Remus, A 2015. Modelos para estimar exigências nutricionais de aminoácidos e resposta à ingestão de metionina: sistema tradicional por fases x nutrição de precisão [in Portuguese]. MSc thesis, School of Agricultural and Veterinary Studies, São Paulo State University, Jaboticabal, Brazil.
Remus, A, Pomar, C, Perondi, D, Gobi, JP, da Silva, WC, de Souza, LJ and Hauschild, L 2019. Response to dietary methionine supply of growing pigs fed daily tailored diets or fed according to a conventional phase feeding system. Livestock Science 222, 713.
Rostagno, HS, Albino, LFT, Hannas, MI, Donzele, JL, Sakomura, NK, Perazzo, FG, Saraiva, A, Teixeira, ML, Rodrigues, PB, Oliveira, RF, Barreto, SLT and Brito, CO 2017. Tabelas brasileiras para aves e suínos: Composição de alimentos e exigências nutricionais [in Portuguese], 4th edition. Editora UFV, Viçosa, Brazil.
van Milgen, J and Noblet, J 2003. Partitioning of energy intake to heat, protein, and fat in growing pigs. Journal of Animal Science 81, E86E93.
van Milgen, J, Valancogne, A, Dubois, S, Dourmad, J-Y, Sève, B and Noblet, J 2008. InraPorc: a model and decision support tool for the nutrition of growing pigs. Animal Feed Science and Technology 143, 387405.
Zhang, GH, Pomar, C, Pomar, J and Del Castillo, JRE 2012. L’alimentation de précision chez le porc charcutier : estimation des niveaux dynamiques de lysine digestible nécessaires à la maximisation du gain de poids. Journées de la Recherche Porcine 44, 171176.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Remus et al. supplementary material
Remus et al. supplementary material

 Unknown (190 KB)
190 KB

Simulated amino acid requirements of growing pigs differ between current factorial methods

  • A. Remus (a1) (a2), L. Hauschild (a2) and C. Pomar (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed