Skip to main content
×
×
Home

The use of a tannin crude extract from Cistus ladanifer L. to protect soya-bean protein from degradation in the rumen

  • M. T. P. Dentinho (a1), O. C. Moreira (a1), M. S. Pereira (a1) and R. J. B. Bessa (a1)
Abstract

Cistus ladanifer L. (CL) is a perennial shrub abundant in dry woods and dry land of Mediterranean zone, with high level of tannins. Tannins bind to protein, preventing its degradation in the digestive compartments. This tannin/protein complex may be advantageous when partially protecting good-quality feed protein from excessive rumen protein degradation. The objective of this trial was to use a CL phenol crude extract to prevent excessive rumen degradation of soya-bean meal protein. The phenolic compounds were extracted using an acetone/water solution (70:30, v/v). Soya-bean meal was then treated with this crude CL extract, containing 640 g of total phenols (TP) per kg of dry matter (DM), in order to obtain mixtures with 0, 12.5, 25, 50, 100 and 150 g of TP per kg DM. Three rumen-cannulated rams were used to assess in sacco rumen degradability of DM and nitrogen (N). The three-step in vitro procedure was used to determine intestinal digestibility. Increasing extract concentrations quadratically decreased the N-soluble fraction a (R2 = 0.96, P = 0.0001) and increased the non-soluble degradable fraction b (R2 = 0.92, P = 0.005). The rate of degradation c linearly decreased with CL extract doses (R2 = 0.44, P = 0.0065). For the effective rumen degradability of N, a linear reduction (R2 = 0.94, P < 0.0001) was observed. The in vitro intestinal digestibility of protein (ivID) quadratically decreased (R2 = 0.99, P < 0.0001) with TP inclusion and the rumen undegradable protein (RUP) showed a quadratic increase (R2 = 0.94, P = 0.0417). Total intestinal protein availability, computed from the RUP and ivID, linearly decreased with TP inclusion level (R2 = 0.45, P = 0.0033).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The use of a tannin crude extract from Cistus ladanifer L. to protect soya-bean protein from degradation in the rumen
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The use of a tannin crude extract from Cistus ladanifer L. to protect soya-bean protein from degradation in the rumen
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The use of a tannin crude extract from Cistus ladanifer L. to protect soya-bean protein from degradation in the rumen
      Available formats
      ×
Copyright
Corresponding author
Email: ezn.inia@mail.telepac.pt
References
Hide All
Agricultural and Food Research Council 1993. Energy and protein requirements of ruminants. CAB International, Wallingford, UK.
Aharoni, Y, Gilboa, N and Silanikove, N 1998. Models of suppressive effect of tannins. Analysis of the suppressive effect of tannins on ruminal degradation by compartmental models. Animal Feed Science and Technology 71, 251-267.
Alexander, RH and McGowan, M 1966. A filtration procedure for the in vitro determination of digestibility of herbage. Journal of the British Grassland Society 16, 140-147.
Barry, TN, Manley, TR and Duncan, SJ 1986. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 4. Site of carbohydrate and protein digestion as influenced by dietary reactive tannin concentrations. British Journal of Nutrition 55, 123-137.
Barry, TN and Mcnabb, WC 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. A review. The British Journal of Nutrition 81, 263-272.
Broadhurst, RB and Jones, WT 1978. Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29, 788-794.
Butter, NL, Dawson, JM and Buttery, PJ 1999. Effects of dietary tannins on ruminants. In Secondary plant products: antinutritional and beneficial actions in animal feeding (ed. Caygill, JC and Mueller-Harvey, I), pp. 51-70, Nottingham University Press, Nottingham, UK.
Calsamiglia, S and Stern, MD 1995. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. Journal of Animal Science 73, 1459-1465.
Carre, B and Brillouet, JM 1986. Yield and composition of cell-wall residues isolated from various feedstuffs used for non ruminant farm animals. Journal of the Science of Food and Agriculture 37, 341-351.
Clegg, KM 1956. The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture 7, 40-44.
Dentinho, MTP, Melo, MM, Bessa, RJB and Ribeiro, JMR 2000. Efeito do polietilenoglicol sobre a degradabilidade ruminal da esteva (Cistus ladanifer L.). Proceedings of the X Congresso de Zootecnia, Vale de Santarém, Portugal, p. 74..
Dulphy, JP and Demarquilly, C 1981. Problèmes particuliers aux ensilages. In Prévision de la valeur nutritive des aliments des ruminants (ed. INRA Publ., ), pp. 81-104, Versailles, France.
Frutos, P, Hervás, G, Giráldez, FJ, Fernández, M and Mantecón, AR 2000. Digestive utilization of quebracho-treated soya bean meal in sheep. Journal of Agriculture Science, Cambridge 134, 101-108.
Getachew, G, Makkar, HPS and Becker, K 2000. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. British Journal of Nutrition 84, 73-83.
Hagerman, A 1987. Radial diffusion method for determining tannin in plant extract. Journal of Chemical Ecology 13, 437-449.
Hagerman, AE 1988. Extraction of tannin from fresh and preserved leaves. Journal of Chemical Ecology 14, 453-462.
International Organization for Standardization 1997. Animal feeding stuffs- determination of nitrogen content and calculation of crude protein content- Kjeldhal method, ISO 5983..
International Organization for Standardization 1999. Animal feeding stuffs- determination of moisture and other volatile matter content. ISO 6496..
Julkunen-Tiitto, R 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33, 213-217.
Khazaal, K, Markantonatos, X, Nastis, A and Ørskov, ER 1993. Changes with maturity in fiber composition and levels of extractable polyphenols in greek browse: effects on in vitro gas-production and in sacco dry matter degradation. Journal of the Science of Food and Agriculture 63, 237-244.
McAllister, TA, Bae, HD, Jones, GA and Cheng, KJ 1994. Microbial attachment and feed digestion in the rumen. Journal of Animal Science 72, 3004-3018.
McSweeney, CS, Palmer, B, McNeil, D and Mand Krause, DO 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology 91, 83-93.
Makkar, HPS 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, 241-256.
Makkar, HPS, Singh, B and Dawra, RK 1988. Effect of tannin-rich leaves of oak (Quercus Incana) on various microbial enzyme-activities of the bovine rumen. British Journal of Nutrition 60, 287-296.
Min, BR, Barry, TN, Attwood, GT and McNabb, WC 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology 106, 3-19.
Mueller-Harvey, I 1999. Tannins their nature and biological significance. In Secondary plant products: antinutritional and beneficial actions in animal feeding (ed. Caygill, JC and Mueller-Harvey, I), pp. 17-39, Nottingham University Press, Nottingham, UK.
Ørskov, ER and McDonald, I 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92, 499-503.
Perez-Maldonado, RA and Norton, BW 1996. The effects of condensed tannins from Desmodium intortum and Calliandra calothyrsus on protein and carbohydrate digestion in sheep and goats. British Journal of Nutrition 76, 515-533.
Rodriguez, MS, Castro, AGG, Lucena, EP, Moreno, CM and Leal, JLA 1989. Papel de los Cistus en el pastoreo caprino. Proceedings of the II Reunião Ibérica de Pastagens e Forragens, Elvas, Portugal..
Salawu, MB, Acamovic, T, Stewart, CS, Hvelplund, T and Weisbjerg, MR 1999. The use of tannins as silage additives: effects on silage composition and mobile bag disappearance of dry matter and protein. Animal Feed Science and Technology 82, 243-259.
Statistical Analysis Systems Institute 2004. SAS/STAT 9.1 user's guide. SAS Inst. Inc., Cary, NC, USA.
Silanikove, N, Nitsan, Z and Perevolotsky, A 1994. Effect of a daily supplementation of polyethylene glycol on intake and digestion of tannin-containing leaves (Ceratonia siliqua) by sheep. Journal of Agricultural and Food Chemistry 42, 2844-2847.
Terrill, TH, Windham, WR, Evans, JJ and Hoveland, CS 1990. Condensed tannin concentration in Sericea lespedeza as influenced by preservation method. Crop Science 30, 219-224.
Van Soest, PJ, Conklin, NL and Horvath, PJ 1987. Tannins in foods and feeds. In Proceedings of the Cornell nutrition conference for feed manufacturers. Cornell University, Ithaca, NY.
Van Soest, PJ, Robertson, JB and Lewis, BA 1991. Methods for dietary fibre, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583-3597.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed