Skip to main content Accessibility help

A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover

  • Adam D. Booth (a1), Andrew Mercer (a2), Roger Clark (a3), Tavi Murray (a4), Peter Jansson (a2) and Charlotte Axtell (a4)...


We show that geophysical methods offer an effective means of quantifying snow thickness and density. Opportunistic (efficient but non-optimized) seismic refraction and ground-penetrating radar (GPR) surveys were performed on Storglaciären, Sweden, co-located with a snow pit that shows the snowpack to be 1.73 m thick, with density increasing from ∼120 to ∼500 kg m–3 (with a +50 kg m–3 anomaly between 0.73 and 0.83 m depth). Depths estimated for two detectable GPR reflectors, 0.76 ±0.02 and 1.71 ± 0.03 m, correlate extremely well with ground-truth observations. Refraction seismic predicts an interface at 1.90 ± 0.31 m depth, with a refraction velocity (3730 ± 190 ms–1) indicative of underlying glacier ice. For density estimates, several standard velocity-density relationships are trialled. In the best case, GPR delivers an excellent density estimate for the upper snow layer (observed = 321 ± 74 kg m–3, estimated = 319 ± 10 kgm–3) but overestimates the density of the lower layer by 20%. Refraction seismic delivers a bulk density of 404 ±22 kgm–3 compared with a ground-truth average of 356 ± 22 kg m–3. We suggest that geophysical surveys are an effective complement to mass-balance measurements (particularly for controlling estimates of snow thickness between pits) but should always be validated against ground-truth observations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover
      Available formats



Hide All
Ambach, W and Denoth, A (1972) Studies on the dielectric properties of snow. Z. Gletscherkd. Glazialgeol., 8(1–2), 113123
Bamber, JL and Rivera, A (2007) A review of remote sensing methods for glacier mass-balance determination. Global Planet. Change, 59(1–4), 138148 (doi: 10.1016/j.gloplacha.2006.11.031)
Barrand, NE, James, TD and Murray, T (2010) Spatio-temporal variability in elevation changes of two high-Arctic valley glaciers. J. Glaciol., 56(199), 771780 (doi: 10.3189/002214310794457362)
Becht, A, Appel, E and Dietrich, P (2006) Analysis of multi-offset GPR data: a case study in a coarse-grained gravel aqui. Near Surf. Geophys., 4(4), 227240 (doi: 10.3997/1873-0604.2005047)
Booth, AD, Clark, R and Murray, T (2010) Semblance response to a ground-penetrating radar wavelet and resulting errors in velocity analysis. Near Surf. Geophys., 8(3), 235246 (doi: 10.3997/1873-0604.2010008)
Booth, AD, Clark, RA and Murray, T (2011) Influences on the resolution of GPR velocity analyses and a Monte Carlo simulation for establishing velocity precision. Near Surf. Geophys., 9(5), 399411 (doi: 10.3997/1873-0604.2011019)
Booth, AD and 6 others (2012) Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland. Cryosphere, 6(4), 909922 (doi: 10.5194/tc-6-909-2012)
Box, JE and 8 others (2006) Greenland ice sheet surface mass-balance variability (1988–2004) from calibrated polar MM5 output. J. Climate, 19(12), 27832800 (doi: 10.1175/JCLI3738.1)
Bradford, JH (2002) Depth characterization of shallow aquifers with seismic reflection, Part I – The failure of NMO velocity analysis and quantitative error prediction. Geophysics, 67(1), 8997 (doi: 10.1190/1.1451362)
Bradford, JH (2010) Simultaneous estimation of water saturation and porosity in the vadose zone by common parameterization of seismic P-wave and GPR velocities. Am. Geophys. Union, Fall Meet. [Abstr. NS44A-03] (
Bradford, JH, Nichols, J, Mikesell, D, Harper, JT and Humphrey, N (2008) In-situ measurement of the elastic properties in a temperate glacier using SH, P, and 3D seismic reflection analysis. Am. Geophys. Union, Fall Meet. [Abstr. NS41A-02] (
Bradford, JH, Harper, JT and Brown, J (2009) Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime. Water Resour. Res., 45(8), W08403 (doi: 10.1029/2008WR007341)
Braithwaite, RJ (1984) Can the mass balance of a glacier be estimated from its equilibrium-line altitude? J. Glaciol., 30(106), 364368
Brown, J, Bradford, JH, Harper, J, Pfeffer, WT, Humphrey, NF and Mosley-Thompson, ES (2012) Georadar-derived estimates of firn density in the percolation zone, western Greenland ice sheet. J. Geophys. Res., 117(F1), F01011 (doi: 10.1029/2011JF002089)
Carroll, RD (1969) The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements. Int. J. Rock Mech. Min. Sci., 6(6), 557579 (doi: 10.1016/01489062(69)90022-9)
Castagna, JP, Batzle, ML and Eastwood, RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50(4), 571581 (doi: 10.1190/1.1441933)
Cox, MJG (1999) Static corrections for seismic reflection surveys (Geophysical References 9). Society of Exploration Geophysicists, Tulsa, OK
Dix, C (1955) Seismic velocities from surface measurements. Geophysics, 20(1), 6886 (doi: 10.1190/1.1438126)
Dunse, T, Schuler, TV, Hagen, JO, Eiken, T, Brandt, O and Høgda, KA (2009) Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR. Ann. Glaciol., 50, 155162 (doi: 10.3189/172756409787769780)
Endres, AL, Murray, T, Booth, AD and West, LJ (2009) A new framework for estimating englacial water content and pore geometry using combined radar and seismic wave velocities. Geophys. Res. Lett., 36(4), L04501 (doi: 10.1029/2008GL036876)
Farrell, RC and Euwema, RN (1984) Refraction statics. IEEE Proc., 72(10), 13161329 (doi: 10.1109/PROC.1984.13020)
Fortin, R and Fortier, R (2001) Tomographic imaging of a snow-pack. In Proceedings of the 58th Annual Eastern Snow Conference, 14–17 May 2001, Ottawa, Canada. US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH
Gardner, GHF, Gardner, LW and Gregory, AR (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770780 (doi: 10.1190/1.1440465)
Grechka, V and Tsvankin, I (1998) 3-D description of normal moveout in anisotropic inhomogeneous media. Geophysics, 63(3), 10791092 (doi: 10.1190/1.1444386)
Gusmeroi, A, Murray, T, Jansson, P, Petterson, R, Aschwanden, A and Booth, AD (2010) Vertical districution of water within the polythermal Storglaciären, Sweden. J. Geophys. Res. 115(F4), F04002 (doi: 10.1029/2009JF001539)
Hagg, WJ, Braun, LN, Uvarov, VN and Makarevich, KG (2004) A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia. J. Glaciol., 50(171), 505510 (doi: 10.3189/172756504781829783)
Harper, JT and Bradford, JH (2003) Snow stratigraphy over a uniform depositional surface: spatial variability and measurement tools. Cold Reg. Sci. Technol., 37 (3), 289298 (doi: 10.1016/S0165-232X(03)00071-5)
Hawley, RL, Brandt, O, Morris, EM, Kohler, J, Shepherd, AP and Wingham, DJ (2008) Techniques for measuring high-resolution firn density profiles: a case study from Kongsvegen, Svalbard. J. Glaciol., 54(186), 463468 (doi: 10.3189/002214308785837020)
Holmlund, P and Jansson, P (1999) The Tarfala mass-balance programme. Geogr. Ann. A, 81(4), 621631 (doi: 10.1111/j.0435-3676.1999.00090.x)
Holmlund, P and Jansson, P (2002) Glaciological research at Tarfala Research Station. Stockholm University, Stockholm
Holmlund, P, Jansson, P and Pettersson, R (2005) A re-analysis of the 58 year mass-balance record of Storglaciären, Sweden. Ann. Glaciol., 42, 389394 (doi: 10.3189/172756405781812547)
Hubbard, A and 6 others (2000) Glacier mass-balance determination by remote sensing and high-resolution modelling. J. Glaciol., 46(154), 491498 (doi: 10.3189/172756500781833016)
Huisman, J, Hubbard, SS, Redman, JD and Annan, AP (2003) Measuring soil water content with ground penetrating radar. Vadose Zone J., 2(4), 476491 (doi: 10.2113/2.4.476)
Huss, M and Bauder, A (2009) 20th-century climate change inferred from four long-term point observations of seasonal mass balance. Ann. Glaciol., 50(50), 207214 (doi: 10.3189/172756409787769645)
Jansson, P and Pettersson, P (2007) Spatial and temporal characteristics of a long mass-balance record, Storglaciären, Sweden. Arct. Antarct. Alp. Res., 39(3), 432437
Karlén, W and Holmlund, P (1996) Tarfala Research Station: 50 years of activity. Geogr. Ann. A, 78(2–3), 101
Kaser, G, Cogley, JG, Dyurgerov, MB, Meier, MF and Ohmura, A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., 33(19), L19501 (doi: 10.1029/2006GL027511)
Kinar, NJ and Pomeroy, JW (2007) Determining snow water equivalent by acoustic sounding. Hydrol. Process., 21(19), 26232640 (doi: 10.1002/hyp.6793)
King, EC and Jarvis, EP (2007) Use of shear waves to measure Poisson’s ratio in polar firn. J. Environ. Eng. Geophys., 12(1), 1521 (doi: 10.2113/JEEG12.1.15)
Kohler, J, Moore, JC and Isaksson, E (2003) Comparison of modelled and observed responses of a glacier snowpack to ground-penetrating radar. Ann. Glaciol., 37, 293297 (doi: 10.3189/172756403781815528)
Kohnen, H (1972) Über die Beziehung zwischen seismischen Geschwindigkeiten und der Dichte in Firn und Eis. Z. Geophys., 38(5), 925935
Kovacs, A, Gow, AJ and Morey, RM (1995) The in-situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol., 23(3), 245256 (doi: 10.1016/0165-232X(94)00016-Q)
Kruetzmann, NC, Rack, W, McDonald, AJ and George, SE (2011) Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica. Cryosphere, 5(2), 391404 (doi: 10.5194/tc-5-391-2011)
Looyenga, H (1965) Dielectric constant of heterogeneous mixtures. Physica, 31(3), 401406 (doi: 10.1016/0031-8914(65)90045-5)
Machguth, H, Eisen, O, Paul, F and Hoelzle, F (2006) Helicopter-borne snow profiling on alpine glaciers with GPR. Geophys. Res. Abstr., 8, 07411 (EGU06-A-07411)
Machguth, H, Haeberli, W and Paul, F (2012) Mass-balance parameters derived from a synthetic network of mass-balance glaciers. J. Glaciol., 58(211), 965979 (doi: 10.3189/2012JoG11J223)
Matsuoka, K, Wilen, L, Hurley, SP and Raymond, CF (2009) Effects of birefringence within ice sheets on obliquely propagating radio waves. IEEE Trans. Geosci. Remote Sens., 475(5), 14291443 (doi: 10.1109/TGRS.2008.2005201)
Mavko, G, Mukerji, T and Dvorkin, J (2009) The rock physics handbook, 2nd edn. Cambridge University Press, Cambridge
Østrem, G and Brugman, M (1991) Glacier mass-balance measurements: a manual for field and office work. (NHRI Science Report 4). Environment Canada. National Hydrology Research Institute, Saskatoon, Sask.
Østrem, G and Haakensen, N (1999) Map comparison or traditional mass-balance measurements: which method is better? Geogr. Ann. A, 81(4), 703711 (doi: 10.1111/1468-0459.00098)
Paterson, WSB (1994) The physics of glaciers, 3rd edn. Elsevier, Oxford
Peters, LE, Anandakrishnan, S, Alley, RB and Voigt, DE (2012) Seismic attenuation in glacial ice: a proxy for englacial temperature. J. Geophys. Res., 117(F2), F02008 (doi: 10.1029/2011JF002201)
Prasad, M (2002) Acoustic measurements in unconsolidated sands at low effective pressure and overpressure detection. Geophysics, 67(2), 405412 (doi: 10.1190/1.1468600)
Rege, R and Godio, A (2011) Geophysical investigation for mechanical properties of a glacier. Geophys. Res. Abstr., 13 [Abstr. EGU2011-10674]
Riznichenko, Y (1949) O rasprostranenii seysmicheskikh voln v diskretnykh y geterogennykh sredakh [On propagation of seismic waves in discrete and heterogeneous media]. Izv. Akad. Nauk SSSR, 13(2), 115128 [in Russian]
Roth, K, Schulin, R, Flühler, H and Attinger, W (1990) Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res., 26(10), 22672273 (doi: 10.1029/WR026i010p02267)
Schmelzbach, C, Tronicke, J and Dietrich, P (2012) High-resolution water content estimation from surface-based ground-penetrating radar reflection data by impedance inversion. Water Resour. Res., 48(8), W08505 (doi: 10.1029/2012WR011955)
Schneider, WA (1971) Developments in seismic data processing and analysis (1968–1970). Geophysics, 36(6), 10431073 (doi: 10.1190/1.1440232)
Schuler, TV, Loe, E, Taurisano, A, Eiken, T, Hagen, JO and Kohler, J (2007) Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard. Ann. Glaciol., 46, 241248 (doi: 10.3189/172756407782871783)
Sheriff, RE and Geldart, LP (1999) Exploration seismology. Cambridge University Press, Cambridge
Sihvola, A, Nyfors, E and Tiuri, M (1985) Mixing formulae and experimental results for the dielectric constant of snow. J. Glaciol., 31(108), 163170
Spetzler, J and Snieder, R (2004) The Fresnel volume and transmitted waves. Geophysics, 69(3), 653663 (doi: 10.1190/1.1759451)
Taner, MT and Koehler, F (1969) Velocity spectra-digital computer derivation and applications of velocity functions. Geophysics, 34(6), 859881 (doi: 10.1190/1.1440058)
Tillard, S and Dubois, J-C (1995) Analysis of GPR data: wave propagation velocity determination. J. Appl. Geophys., 33(1–3), 7791 (doi: 10.1016/0926-9851(95)90031-4)
Tiuri, MT, Sihvola, AH, Nyfors, EG and Hallikainen, MT (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J. Ocean. Eng., 9(5), 377382 (doi: 10.1109/JOE.1984. 1145645)
Topp, GC, Davis, JL and Annan, AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res., 16(3), 574582 (doi: 10.1029/WR016i003p00574)
Tsoflias, G, Ivanov, J, Anandakrishnan, S, Horgan, H and Peters, L (2010) Lateral variability in firn properties revealed by active source seismic surface waves. Geophys. Res. Abstr., 12, [Abstr. EGU2010-6445]
Wadhwa, RS, Ghosh, N and Subba Rao, Ch (2010) Empirical relation for estimating shear wave velocity from compressional wave velocity of rocks. J. Ind. Geophys. Union, 14(1), 2130
Wyllie, MRJ, Gregory, AR and Gardner, LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1), 4170 (doi: 10.1190/1.1438217)
Yilmaz, Ö and Doherty, SM (2001) Seismic data analysis: processing, inversion and interpretation of seismic data. (Investigations in Geophysics 10) Society of Exploration Geophysicists, Tulsa, OK
Zemp, M, Hoelzle, M and Haeberli, W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann. Glaciol., 50(50), 101111 (doi: 10.3189/172756409787769591)
Zemp, M and 6 others (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99). Part 2: Comparison of glaciological and volumetric mass balances. Cryosphere, 4(3), 345357 (doi: 10.5194/tc-4-345-2010)
Zimmer, MA, Prasad, M, Mavko, G and Nur, A (2000) Seismic velocities of unconsolidated sands: Part 1 – pressure trends from *Formerly: Glaciology Group, Department of Geography, College of Science, Swansea University, Swansea, UK.

Related content

Powered by UNSILO

A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover

  • Adam D. Booth (a1), Andrew Mercer (a2), Roger Clark (a3), Tavi Murray (a4), Peter Jansson (a2) and Charlotte Axtell (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.