Skip to main content Accesibility Help

Initial field observations on Qaanaaq ice cap, northwestern Greenland

  • Shin Sugiyama (a1), Daiki Sakakibara (a1) (a2), Satoshi Matsuno (a1) (a2), Satoru Yamaguchi (a3), Sumito Matoba (a1) and Teruo Aoki (a4)...

To study the glaciological processes controlling the mass budget of Greenland’s peripheral glaciers and ice caps, field measurements were carried out on Qaanaaq ice cap, a 20 km long ice cap in northwestern Greenland. In the summer of 2012, we measured surface melt rate, ice flow velocity and ice thickness along a survey route spanning the ice margin (200m a.s.l.) to the ice-cap summit (1110m a.s.l.). Melt rates in the ablation area were clearly influenced by dark materials covering the ice surface, where degree-day factors varied from 5.44 mm w.e. K–1 d–1 on a clean surface to 8.26 mm w.e. K–1 d–1 in the dark regions. Ice velocity showed diurnal variations, indicating the presence of surface-meltwater induced basal sliding. Mean ice thickness along the survey route was 120 m, with a maximum thickness of 165 m. Ice velocity and temperature fields were computed using a thermomechanically coupled numerical glacier model. Modelled ice temperature, obtained by imposing estimated annual mean air temperature as the surface boundary condition, was substantially lower than implied by the observed ice velocity. This result suggests that the ice dynamics and thermodynamics of the ice cap are significantly influenced by heat transfer from meltwater and changing ice geometry.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Initial field observations on Qaanaaq ice cap, northwestern Greenland
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Initial field observations on Qaanaaq ice cap, northwestern Greenland
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Initial field observations on Qaanaaq ice cap, northwestern Greenland
      Available formats
Hide All
Bingham, RG, Hubbard, AL, Nienow, PW and Sharp, MJ (2008) An investigation into the mechanisms controlling seasonal speed-up events at a High Arctic glacier. J. Geophys. Res., 113(F2), F02006 (doi: 10.1029/2007JF000832)
Blatter, H and Hutter, K (1991) Polythermal conditions in Arctic glaciers. J. Glaciol., 37(126), 261269
Blatter, H and Kappenberger, G (1988) Mass balance and thermal regime of Laika ice cap, Coburg Island, N.W.T., Canada. J. Glaciol., 34(116), 102110
Bolch, T and 6 others (2013) Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Res. Lett., 40(5), 875881 (doi: 10.1002/grl.50270)
Colgan, W and 6 others (2012) The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 2. Observed and modeled ice flow. J. Glaciol., 58(207), 5164 (doi: 10.3189/ 2012JoG11J081)
Fierz, C and 8 others. (2009) The international classification for seasonal snow on the ground. (IHP Technical Documents in Hydrology 83) UNESCO–International Hydrological Programme, Paris
Glen, JW (1955) The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538 (doi: 10.1098/rspa.1955. 0066)
Glen, JW and Paren, JG (1975) The electrical properties of snow and ice. J. Glaciol., 15(73), 1538
Greve, R (2005) Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol., 42(1), 424432 (doi: 10.3189/ 172756405781812510)
Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Springer, Dordrecht
Hanna, E, Mernild, SH, Cappelen, J and Steffen, K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett., 7(4), 045404 (doi: 10.1088/1748-9326/7/4/ 045404)
Hock, R (2003) Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115 (doi: 10.1016/S0022-1694(03)00257-9)
Mernild, SH and 6 others (2011) Increasing mass loss from Greenland’s Mittivakkat Gletscher. Cryosphere, 5(2), 341348 (doi: 10.5194/tc-5-341-2011)
Nghiem, SV and 8 others (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett., 39(20), L20502 (doi: 10.1029/2012GL053611)
Oerlemans, J, Giesen, RH and Van den Broeke, MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J. Glaciol., 55(192), 729736 (doi: 10.3189/002214309789470969)
Palmer, SJ, Shepherd, A, Sundal, A, Rinne, E and Nienow, P (2010) InSAR observations of ice elevation and velocity fluctuations at the Flade Isblink ice cap, eastern North Greenland. J. Geophys. Res., 15(F4), F04037 (doi: 10.1029/2010JF001686)
Paterson, WSB (1994) The physics of glaciers, 3rd edn. Elsevier, Oxford
Pattyn, F, Nolan, M, Rabus, B and Takahashi, S (2005) Localized basal motion of a polythermal Arctic glacier: McCall Glacier, Alaska, USA. Ann. Glaciol., 40, 4751 (doi: 10.3189/ 172756405781813537)
Phillips, T, Rajaram, H and Steffen, K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37(20), L20503 (doi: 10.1029/ 2010GL044397)
Rastner, P, Bolch, T, Mölg, N, Machguth, H, Le Bris, R and Paul, F (2012) The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere, 6(6), 14831495 (doi: 10.5194/ tc-6-1483-2012)
Rinne, EJ and 6 others (2011) On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland. J. Geophys. Res., 116(F3), F03024 (doi: 10.1029/2011JF001972)
Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/ nature09618)
Stuefer, M, Rott, H and Skvarca, P (2007) Glaciar Perito Moreno, Patagonia: climate sensitivities and glacier characteristics preceding the 2003/04 and 2005/06 damming events. J. Glaciol., 53(180), 316 (doi: 10.3189/172756507781833848)
Sugiyama, S, Gudmundsson, GH and Helbing, J (2003) Numerical investigation of the effects of temporal variations in basal lubrication on englacial strain-rate distribution. Ann. Glaciol., 37, 4954 (doi: 10.3189/172756403781815618)
Sugiyama, M, Yoshizawa, T, Huss, M, Tsutaki, S and Nishimura, D (2011) Spatial distribution of surface ablation in the terminus of Rhonegletscher, Switzerland. Ann. Glaciol., 52(58), 18 (doi: 10.3189/172756411797252185)
Takeuchi, N (2013) Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana Glacier in the Alaska range). Environ. Res. Lett., 8(3), 035002 (doi: 10.1088/ 1748-9326/8/3/035002)
Takeuchi, N, Kohshima, S and Seko, K (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct. Antarct. Alp. Res., 33(2), 115122
Takeuchi, N, Nagatsuka, N, Shimada, R and Uetake, J (2013) Biogenic impurities darkening the Greenland ice sheet. In Detecting the Change in the Arctic System and Searching the Global Influence. 3rd International Symposium on the Arctic Research (ISAR-3), 14–17 January 2013, Tokyo, Japan.
Van de Wal, RSW and Oerlemans, J (1994) An energy balance model for the Greenland ice sheet. Global Planet. Change, 9(1–2), 115131
Wientjes, IGM and Oerlemans, J (2010) An explanation for the dark region in the western melt zone of the Greenland ice sheet. Cryosphere, 4(3), 261268 (doi: 10.5194/tc-4-261-2010)
Wientjes, IGM, Van de Wal, RSW, Reichart, GJ, Sluijs, A and Oerlemans, J (2011) Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere, 5(3), 589601 (doi: 10.5194/tc-5-589-2011)
Wohlleben, T, Sharp, M and Bush, A (2009) Factors influencing the basal temperatures of a High Arctic polythermal glacier. Ann. Glaciol., 50(52), 916 (doi: 10.3189/172756409789624210)
Zwally, HJ, Abdalati, W, Herring, T, Larson, K, Saba, J and Steffen, K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222 (doi: 10.1126/science. 1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed