Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-dxj8b Total loading time: 0.726 Render date: 2023-01-29T21:31:13.695Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A role of serotonin and the insula in vigor: Tracking environmental and physiological resources

Published online by Cambridge University Press:  30 September 2021

Mattie Tops
Developmental and Educational Psychology Unit, Institute of Psychology, Wassenaarseweg 52, NL-2333 AK Leiden, The Netherlandsm.tops@fsw.leidenuniv.nl
Maarten A. S. Boksem
Department of Marketing Management, Rotterdam School of Management, Erasmus University, 3000 DRRotterdam, The
Jesus Montero-Marin
Department of Psychiatry, Warneford Hospital, Warneford Ln, Headington, OxfordOX3 7JX,
Dimitri van der Linden
Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, 3000 DRRotterdam, The Netherlandsvanderlinden@essb.eur.nl


We describe a neural monitor of environmental and physiological resources that informs effort expenditure. Depending on resources and environmental stability, serotonergic and dopaminergic neuromodulations favor different behavioral controls that are organized in corticostriatal loops. This broader perspective produces some suggestions and questions that may not be covered by the foraging approach to vigor of Shadmehr and Ahmed (2020).

Open Peer Commentary
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ainslie, G. (2020). Willpower with and without effort. Behavioral and Brain Sciences, 44, e30. ScholarPubMed
Beeler, J. A., Frazier, C. R., & Zhuang, X. (2012). Putting desire on a budget: Dopamine and energy expenditure, reconciling reward and resources. Frontiers in integrative neuroscience, 6, 49. ScholarPubMed
Berke, J. D. (2018). What does dopamine mean?. Nature neuroscience, 21(6), 787793. ScholarPubMed
Boksem, M. A. S., & Tops, M. (2008). Mental fatigue: Costs and benefits. Brain Research Reviews, 59, 125139.CrossRefGoogle ScholarPubMed
Buckner, R. L., & Carroll, D. C. (2007) Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957.CrossRefGoogle ScholarPubMed
Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 54975502. ScholarPubMed
Carter, C. S. (2014). Oxytocin pathways and the evolution of human behavior. Annual review of psychology, 65, 1739. ScholarPubMed
Carver, C. S., Johnson, S. L., & Joormann, J. (2009). Two-mode models of self-regulation as a tool for conceptualizing effects of the serotonin system in normal behavior and diverse disorders. Current Directions of Psychological Science, 18, 195199.CrossRefGoogle ScholarPubMed
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655666.CrossRefGoogle Scholar
Damasio, A. R. (1999). The feelings of what happens: Body and emotion in the making of consciousness. Houghton Mifflin Harcourt.Google Scholar
de Graaf, J. B., Gallea, C., Pailhous, J., Anton, J. L., Roth, M., & Bonnard, M. (2004). Awareness of muscular force during movement production: An fMRI study. NeuroImage, 21,13571367.CrossRefGoogle Scholar
Depue, R. A. (1995). Neurobiological factors in personality and depression. European Journal of Personality, 9, 413439.CrossRefGoogle Scholar
Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. Journal of Neurophysiology, 87(1), 615620.CrossRefGoogle Scholar
Herbert, B. M., Ulbrich, P., & Schandry, R. (2007) Interoceptive sensitivity and physical effort: Implications for the self-control of physical load in everyday life. Psychophysiology, 44(2), 194202.CrossRefGoogle Scholar
Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both costly and valued. Trends in Cognitive Sciences, 22(4), 337349. ScholarPubMed
Lowry, C. A., Lightman, S. L., & Nutt, D. J. (2009). That warm fuzzy feeling: Brain serotonergic neurons and the regulation of emotion. Journal of Psychopharmacology, 23, 392400.CrossRefGoogle ScholarPubMed
Porat, O., Hassin-Baer, S., Cohen, O. S., Markus, A., & Tomer, R. (2014). Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss. Cortex, 51, 8291. ScholarPubMed
Russo, S., Kema, I. P., Fokkema, M. R., Boon, J. C., Willemse, P. H. B., de Vries, E. G. E., Korf, J. (2003). Tryptophan as a link between psychopathology and somatic states. Psychosomatic Medicine, 65(4), 665671.CrossRefGoogle ScholarPubMed
Sainburg, R. L. (2014). Convergent models of handedness and brain lateralization. Frontiers in Psychology, 5, 1092.CrossRefGoogle ScholarPubMed
Salamone, J. D., Steinpreis, R. E., McCullough, L. D., Smith, P., Grebel, D., & Mahan, K. (1991). Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Berl), 104, 515521.CrossRefGoogle Scholar
Schneider, J. E., Wise, J. D., Benton, N. A., Brozek, J. M., & Keen-Rhinehart, E. (2013). When do we eat? Ingestive behavior, survival, and reproductive success. Hormones and Behavior, 64 (4), 702728. ScholarPubMed
Shadmehr, R., & Ahmed, A. A. (2020). Vigor. Neuroeconomics of movement control. Massachusetts London, England: MIT Press Cambridge.CrossRefGoogle ScholarPubMed
Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L., Snyder, A. Z., McAvoy, M. P., & Corbetta, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. Journal of Neuroscience, 29, 43924407.CrossRefGoogle ScholarPubMed
Tanaka, S. C., Schweighofer, N., Asahi, S., Shishida, K., Okamoto, Y., Yamawaki, S. (2007). Serotonin differently regulates short- and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE, 2, e1333.CrossRefGoogle Scholar
Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7, 887893.CrossRefGoogle ScholarPubMed
Tanaka, S. C., Samejima, K., Okada, G., Ueda, K., Okamoto, Y., Yamawaki, S., & Doya, K. (2006). Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Networks, 19, 12331241.CrossRefGoogle ScholarPubMed
Tang, T. L., & West, W. B. (1997). The importance of human needs during peacetime, retrospective peacetime, and the Persian Gulf War. International Journal of Stress Management, 4, 4762. Scholar
Tinaz, S., Para, K., Vives-Rodriguez, A., Martinez-Kaigi, V., Nalamada, K., Sezgin, M., & Constable, R. T. (2018). Insula as the interface between body awareness and movement: A neurofeedback-guided kinesthetic motor imagery study in Parkinson's disease. Frontiers in Human Neuroscience, 12, 496. ScholarPubMed
Tops, M., & Boksem, M. A. S. (2011). A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms and event-related potentials. Frontiers in Psychology, 2(330), 1–14.CrossRefGoogle ScholarPubMed
Tops, M., Boksem, M. A. S., & Koole, S. (2013). Subjective effort derives from a neurological monitor of performance costs and physiological resources. Behavioral and Brain Sciences, 36(6), 703704.CrossRefGoogle ScholarPubMed
Tops, M., & de Jong, R. (2006). Posing for success: Clenching a fist facilitates approach. Psychonomic Bulletin and Review, 13(2), 229234.CrossRefGoogle ScholarPubMed
Tops, M., IJzerman, H., & Quirin, M. (2021). Personality dynamics in the brain: Individual differences in updating of representations and their phylogenetic roots. In Rauthmann, J. F. (Ed.), The handbook of personality dynamics and processes. (pp. 125–254) Elsevier. Scholar
Tops, M., Luu, P., Boksem, M. A. S., & Tucker, D. M. (2010). Brain substrates of behavioral programs associated with self-regulation. Frontiers in Cognition, 1, 152.Google ScholarPubMed
Tops, M., Quirin, M., Boksem, M. A. S., & Koole, S. L. (2017). Large-scale neural networks and the lateralization of motivation and emotion. International Journal of Psychophysiology, 119, 4149. doi: 10.1016/j.ijpsycho.2017.02.004CrossRefGoogle ScholarPubMed
Tops, M., Russo, S., Boksem, M. A., & Tucker, D. M. (2009). Serotonin: Modulator of a drive to withdraw. Brain and Cognition, 71, 427436.CrossRefGoogle ScholarPubMed
Tops, M., Schlinkert, C., Tjew, A., Sin, M., Samur, D., & Koole, S. L. (2015). Protective inhibition of self-regulation and motivation: Extending a classic Pavlovian principle to social and personality functioning. In Gendolla, G. H. E., Tops, M. & Koole, S. L. (Eds.), Handbook of biobehavioral approaches to self-regulation. Springer, pp. 6885. doi: 10.1007/978-1-4939-1236-0Google Scholar
Vatansever, D., Menon, D. K., & Stamatakis, E. A. (2017). Default mode contributions to automated information processing. Proceedings of the National Academy of Sciences USA, 114(48), 1282112826.CrossRefGoogle ScholarPubMed
Yoon, T., Geary, R. B., Ahmed, A. A., & Shadmehr, R. (2018). Control of movement vigor and decision making during foraging. Proceedings of the National Academy of Sciences USA, 115, E10476E10485.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A role of serotonin and the insula in vigor: Tracking environmental and physiological resources
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A role of serotonin and the insula in vigor: Tracking environmental and physiological resources
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A role of serotonin and the insula in vigor: Tracking environmental and physiological resources
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *