Skip to main content Accessibility help

Functional near-infrared spectroscopy in psychiatry

  • Cynthia Y. Y. Lai, Cyrus S. H. Ho, Charmaine R. Lim and Roger C. M. Ho


Functional near-infrared spectroscopy (fNIRS) has been used in healthcare and medical research for the past two decades. In particular, the use of fNIRS in academic and clinical psychiatry has increased rapidly owing to its advantages over other neuroimaging modalities. fNIRS is a tool that can potentially supplement clinical interviews and mental state examinations to establish a psychiatric diagnosis and monitor treatment progress. This article provides a review of the theoretical background of fNIRS, key principles of its applications in psychiatry and its limitations, and shares a vision of its future applicability in psychiatric research and clinical practice.

Learning Objectives

• Understand the theoretical background, mechanism of action and clinical applications of fNIRS and compare it to other neuroimaging modalities

• Understand the use of fNIRS in academic and clinical psychiatry through current research findings

• Be able to evaluate the future potential of fNIRS and formulate new ideas for using fNIRS in academic and clinical psychiatry


Corresponding author

Correspondence Roger C. M. Ho, Department of Psychological Medicine, National University of Singapore, Level 9 NUHS Tower Block, 1E Kent Ridge Road Singapore. Email:


Hide All

Declaration of Interest




Hide All
Chou, PH, Lan, TH (2013) The role of near-infrared spectroscopy in Alzheimer's disease. Journal of Clinical Gerontology and Geriatrics, 4: 33–6.
Cui, X, Bray, S, Bryant, DM, et al (2011) A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage, 54: 2808–21.
Dempsey, JP, Harris, KS, Shumway, ST, et al (2015) Functional near infrared spectroscopy as a potential biological assessment of addiction recovery: preliminary findings. American Journal of Drug and Alcohol Abuse, 41: 119–26.
Ehlis, AC, Herrmann, MJ, Plichta, MM, et al (2007) Cortical activation during two verbal fluency tasks in schizophrenic patients and healthy controls as assessed by multi-channel near-infrared spectroscopy. Psychiatry Research, 156: 113.
Ehlis, AC, Bähne, CG, Jacob, CP, et al (2008) Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. Journal of Psychiatric Research, 42: 1060–7.
Fekete, T, Beacher, FDCC, Cha, J, et al (2014) Small-world network properties in prefrontal cortex correlate with predictors of psychopathology risk in young children: a NIRS study. Neuroimage, 85: 345–53.
Ferrari, M, Quaresima, V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63: 921–35.
Fukuda, M (2015) fNIRS as an auxiliary laboratory test for differential diagnosis of depressive state: clinical application of near-infrared spectroscopy (NIRS) as the first trial for approved laboratory tests in psychiatry. Seishin Shinkeigaku Zasshi, 117: 7993.
Fukuda, M, Mikuni, M (2012) Clinical application of near-infrared spectroscopy (NIRS) in psychiatry: the advanced medical technology for differential diagnosis of depressive state. Seishin Shinkeigaku Zasshi, 114: 801–6.
Ho, CSH, Zhang, MWB, Ho, RCM (2016) Optical topography psychiatry: a chip off the old block or a new look beyond the mind-brain frontiers? Frontiers in Psychiatry, 7: 74.
Hoshi, Y (2016) Hemodynamic signals in fNIRS. In New Horizons in Neurovascular Coupling: A Bridge Between Brain Circulation and Neural Plasticity (eds Masamoto, K, Hirase, H, Yamada, K): 153–82. Elsevier.
Inoue, Y, Sakihara, K, Gunji, A, et al (2012) Reduced prefrontal hemodynamic response in children with ADHD during the Go/NoGo task: a NIRS study. NeuroReport, 23: 5560.
Ishii-Takahashi, A, Takizawa, R, Nishimura, Y, et al (2014) Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults. Neuroimage, 4: 5363.
Koike, S, Nishimura, Y, Takizawa, R, et al (2013) Near-infrared spectroscopy in schizophrenia: a possible biomarker for predicting clinical outcome and treatment response. Frontiers in Psychiatry 4: 145.
Kubota, Y, Toichi, M, Shimizu, M, et al (2005) Prefrontal activation during verbal fluency tests in schizophrenia: a near-infrared spectroscopy (NIRS) study. Schizophrenia Research, 77: 6573.
Jung, CE, Strother, L, Feil-Seifer, DJ, et al (2016) Atypical asymmetry for processing human and robot faces in autism revealed by fNIRS. PLOS ONE, 11: e0158804.
Liu, XM, Sun, GX, Zhang, XQ, et al (2014) Relationship between the prefrontal function and the severity of the emotional symptoms during a verbal fluency task in patients with major depressive disorder: a multi-channel NIRS study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 54: 114–21.
Martinelli, C, Shergill, SS (2015) Everything you wanted to know about neuroimaging and psychiatry, but were afraid to ask. BJPsych Advances, 21: 251–60.
Nishimura, Y, Tanii, H, Hara, N, et al (2009) Relationship between the prefrontal function during a cognitive task and the severity of the symptoms in patients with panic disorder: a multi-channel NIRS study. Psychiatry Research, 172: 168–72.
Noda, T, Yoshida, S, Matsuda, T, et al (2012) Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. Journal of Psychiatic Research, 46: 905–12.
Okada, K, Ota, T, Iida, J, et al (2013) Lower prefrontal activity in adults with obsessive–compulsive disorder as measured by near-infrared spectroscopy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 43: 713.
Sato, H, Yahata, N, Funane, T, et al (2013) A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. Neuroimage, 83: 158–73.
Schroeter, ML, Zysset, S, Kupka, T, et al (2002) Near-infrared spectroscopy can detect brain activity during a color–word matching Stroop task in an event-related design. Human Brain Mapping, 17: 6171.
Takahashi, T (2011) Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage, 57: 9911002.
Takanori, S, Haruhide, H, Yasuhiro, W (2011) Independent component analysis technique to remove skin blood flow artifacts in functional near-infrared spectroscopy signals. Paper presented at 21st Annual Conference of the Japanese Neural Network Society (December, 2011). JNNS (
Takizawa, R, Fukuda, M, Kawasaki, S, et al (2014) Neuroimaging-aided differential diagnosis of the depressive state. Neuroimage, 85: 498507.
Yamanaka, K, Tomioka, H, Kawasaki, S, et al (2014) Effect of parietal transcranial magnetic stimulation on spatial working memory in healthy elderly persons-comparison of near infrared spectroscopy for young and elderly. PLOS ONE, 14: e102306.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

BJPsych Advances
  • ISSN: 2056-4678
  • EISSN: 2056-4686
  • URL: /core/journals/bjpsych-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Functional near-infrared spectroscopy in psychiatry

  • Cynthia Y. Y. Lai, Cyrus S. H. Ho, Charmaine R. Lim and Roger C. M. Ho
Submit a response


No eLetters have been published for this article.


Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *