Skip to main content Accessibility help
×
×
Home

The amino acid composition of human milk corrected for amino acid digestibility

  • Alison J. Darragh (a1) and Paul J. Moughan

Abstract

Human milk was collected from women in their 10th–14th weeks of lactation, and was analysed for amino acids. Corrections were made for losses of amino acids which were presumed to occur during acid hydrolysis, using a non-linear mathematical model that describes the simultaneous processes of amino acid yield and decay. The mean amino acid composition of the human milk was found to be similar to previously reported estimates, although the cysteine content of the human milk in the present study was 20% higher than the average literature estimate. True (corrected for endogenous amino acid excretions) ileal amino acid digestibility of human milk was determined using the 3-week-old piglet as a model animal for the human infant. The piglets were given either human milk (n 6) or a protein-free diet (n 6) for a 6 d experimental period. Cr2O3 was added as an indigestible marker, to both the human milk and protein-free diet. At the end of the experimental period the piglets were anaesthetized and samples of digesta removed from the terminal ileum of each piglet. After sampling the piglets were killed. Endogenous ileal excretions of amino acids were determined in piglets fed on the protein-free diet. The true digestibilities of total N and amino acid N were 88% and 95% respectively. The true ileal digestibility of the non-amino acid N fraction in human milk, when calculated by difference was only 50%. The true digestibility of the amino acids in human milk ranged from 81–101% with threonine (86%) being the least digestible essential amino acid. When the true ileal digestibility values were used to correct the amino acid composition of human milk, the pattern of digestible amino acids in human milk was different compared with the currently recommended pattern of amino acid requirements for the infant.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The amino acid composition of human milk corrected for amino acid digestibility
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The amino acid composition of human milk corrected for amino acid digestibility
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The amino acid composition of human milk corrected for amino acid digestibility
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Alison Darragh, fax +64 6 3505446, email A.Darragh@massey.ac.nz

References

Hide All
Association of Official Analytical Chemists (1980) Official Methods of Analysis, vol. 14. Washington, DC: Association of Official Analytical Chemists.
Brock, JH, Arzabe, F, Lampreave, F & Pineiro, A (1976) The effect of trypsin on bovine transferrin and lactoferrin. Biochimica et Biophysica Acta 446, 214225.
Butte, NF, Garza, C, Burr, R, Goldman, AS, Kennedy, K & Kitzmiller, JL (1987) Milk composition of insulin-dependent diabetic women. Journal of Pediatric Gastroenterology and Nutrition 6, 936941.
Butts, CA, Moughan, PJ, Smith, WC & Carr, DH (1993) Endogenous lysine and other amino acid flows at the terminal ileum of the growing pig (20 kg bodyweight): the effect of protein-free, synthetic amino acid, peptide and protein alimentation. Journal of the Science of Food and Agriculture 61, 3140.
Casey, CE & Hambidge, KM (1983) Nutritional aspects of human lactation. In Lactation Physiology, Nutrition and Breast Feeding, pp. 8587 [Neville, MC and Neifert, MR, editors]. New York, NY: Plenum Press.
Committee on Nutrition (1985) Infant nutrition and the development of gastrointestinal function. In Pediatric Nutrition Handbook, pp. 144153 [Forbes, GB and Woodruff, CW, editors]. Illinois: American Academy of Pediatrics.
Costigan, P & Ellis, KJ (1987) Analysis of faecal chromium derived from controlled-release marker devices. New Zealand Journal of Technology 3, 8992.
Darragh, AJ (1995) The amino acid composition of human milk – towards determining the amino acid requirements of the human infant.
Darragh, AJ, Cranwell, PD & Moughan, PJ (1994) Absorption of lysine and methionine from the proximal colon of the piglet. British Journal of Nutrition 71, 739752.
Darragh, AJ, Garrick, DG, Moughan, PJ & Hendriks, WH (1996) Correction for amino acid loss during acid hydrolysis of a purified protein. Analytical Biochemistry 236, 199207.
Darragh, AJ & Moughan, PJ (1995) The three-week-old piglet as a model animal for studying protein digestion in human infants. Journal of Pediatric Gastroenterology and Nutrition 21, 387393.
Davidson, LA & Lönnerdal, B (1987) Persistence of human milk proteins in the breast-fed infant. Acta Paediatrica Scandinavica 76, 733740.
Department of Health and Social Security (1977) The Composition of Mature Human Milk. Report on Health and Social Subjects, no. 12. London: HM Stationery Office.
Department of Health and Social Security (1981) The Collection and Storage of Human Milk. Report on Health and Social Subjects, no. 22. London: HM Stationery Office.
Dewey, KG, Beaton, G, Fjeld, C, Lönnerdal, B & Reeds, P (1996) Protein requirements of infants and children. European Journal of Clinical Nutrition 50, Suppl. 1, S119S150.
Food and Agriculture Organization/World Health Organization/United Nations University (1985) Energy and Protein Requirements. WHO Technical Report Series, no. 724. Geneva: World Health Organization.
Food and Agriculture Organization/World Health Organization/United Nations University (1990) Joint FAO/WHO Expert Consultation of Protein Quality Evaluation. Rome: FAO.
Fransson, G-B & Lönnerdal, B (1980) Iron in human milk. Journal of Pediatrics 96, 380384.
Garza, C, Johnson, CA, Harrist, R & Nichols, B (1982) Effects of methods of collection and storage on nutrients in human milk. Early Human Development 6, 295303.
Hambraeus, L, Fransson, G-B & Lönnerdal, B (1984) Nutritional availability of breast milk protein. Lancet 2, 167168.
Hambraeus, L, Lönnerdal, B, Forsum, E & Gebre-Medhin, M (1978) Nitrogen and protein components of human milk. Acta Paediatrica Scandinavica 67, 561565.
Hamosh, M, Berkow, S, Bitman, J, Freed, L, Happ, B, Jones, JB, Mehta, NR, Wood, DL & Hamosh, P (1984) Handling and storage of human milk specimens for research. Journal of Pediatric Gastroenterology and Nutrition 3, 284289.
Haneberg, B & Tonder, O (1973) Immunoglobulins and other serum proteins in feces from infants and children. Scandinavian Journal of Immunology 2, 375383.
Harzer, G & Bindels, JG (1987) Main compositional criteria of human milk and their implications on nutrition in early infancy. In New Aspects of Nutrition in Pregnancy, Infancy and Prematurity, pp. 8394 [Xanthou, M, editor]. Amsterdam: Elsevier Science Publishers.
Hytten, FE (1954) Clinical and chemical studies in human lactation: III. Diurnal variation in major constituents of milk. British Medical Journal i, 179182.
Jackson, AA (1989) Optimizing amino acid and protein supply and utilization in the newborn. Proceedings of the Nutrition Society 48, 293301.
Lönnerdal, B (1985) Biochemistry and physiological function of human milk proteins. American Journal of Clinical Nutrition 42, 12991317.
Lönnerdal, B (1986) Effects of maternal dietary intake on human milk composition. Journal of Nutrition 116, 499513.
Lönnerdal, B & Chen, C-L (1990) Effects of formula protein level and ratio on infant growth, plasma amino acids and serum trace elements. I. Cow's milk formula. Acta Paediatrica Scandinavica 79, 257265.
Lönnerdal, B, Forsum, E, Gebre-Medhin, M & Hambraeus, L (1976) Breast milk composition in Ethiopian and Swedish mothers. II. Lactose, nitrogen and protein content. American Journal of Clinical Nutrition 29, 11341141.
Low, AG (1980) Nutrient absorption in pigs. Journal of the Science of Food and Agriculture 31, 10871130.
McNeil, NI (1988) Nutritional implication of human and mammalian large intestinal function. World Review of Nutrition and Dietetics 56, 142.
Moore, S (1963) On the determination of cystine as cysteic acid. Journal of Biological Chemistry 238, 235237.
Moughan, PJ, Birtles, MJ, Cranwell, PD, Smith, WC & Pedraza, M (1992 a) The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Review of Nutrition and Dietetics 67, 40113.
Moughan, PJ & Schuttert, G (1991) Composition of nitrogen-containing fractions in digesta from the distal ileum of pigs fed a protein-free diet. Journal of Nutrition 121, 15701574.
Moughan, PJ, Schuttert, G & Leenaars, M (1992 b) Endogenous amino acid flow in the stomach and small intestine of the young growing pig. Journal of the Science of Food and Agriculture 60, 437442.
Ogra, SS, Weintraub, D & Ogra, PL (1977) Immunologic aspects of human colostrum and milk. III. Fate and absorption of cellular and soluble components in the gastrointestinal tract of the newborn. Journal of Immunology 119, 245248.
Prentice, A, MacCarthy, A, Stirling, DM, Vasquez-Valesquez, L & Ceesay, SM (1989) Breast-milk IgA and lactoferrin survival in the gastrointestinal tract – a study in rural Gambian children. Acta Paediatrica Scandinavica 78, 505512.
Räihä, N, Minoli, I, Moro, G & Bremer, HJ (1986) Milk protein intake in the term infant. II. Effect on plasma amino acid concentrations. Acta Paediatrica Scandinavica 75, 887892.
Robel, EJ & Crane, AB (1972) An accurate method for correcting unknown amino acid losses from protein hydrolysates. Analytical Biochemistry 48, 233246.
Rodwell, VW (1985) Catabolism of the carbon skeletons of amino acids. In Harper's Review of Biochemistry, 20th ed. California: Lange Medical Publications.
Rowan, AM, Moughan, PJ, Wilson, MN, Maher, K & Tasman-Jones, C (1994) Comparison of the ileal and faecal digestibility of dietary amino acids in adult humans and evaluation of the pig as a model animal for digestion studies in man. British Journal of Nutrition 71, 2942.
Sauer, WC & de Lange, K (1992) Novel methods for determining protein and amino acid digestibilities in feedstuffs. In Modern Methods in Protein Nutrition and Metabolism, pp. 87119 [Nissen, S, editor]. New York, NY: Academic Press.
Sauer, WC & Ozimek, L (1986) Digestibility of amino acids in swine: results and their practical application. A review. Livestock Production Science 15, 367388.
Schmitz, M, Ahrens, F, Schön, J & Hagemeister, H (1991) Amino acid absorption and its significance for protein supply. In Digestive Physiology in Pigs, pp. 8587 [Verstegen, MWA, Huisman, J and Den Hartog, LA, editors]. Wageningen: Pudoc Publishing.
Spik, G, Brunet, B, Mazurier-Dehaine, C, Fontaine, G & Montreuil, J (1982) Characterization and properties of the human and bovine lactotransferrins extracted from the faeces of newborn infants. Acta Paediatrica Scandinavica 71, 979985.
Statistical Analysis Systems (1985) SAS User's Guide: Statistics. Cary, NC: SAS Institute Inc.
Sturman, JA, Gaull, G & Räihä, NCR (1970) Absence of cystathionase in human fetal liver: is cystine essential? Science 169, 7476.
Svanberg, U, Gebre-Medhin, M, Ljungqvist, B & Olsson, M (1977) Breast milk composition in Ethiopian and Swedish mothers. III. Amino acids and other nitrogenous substances. American Journal of Clinical Nutrition 30, 499507.
van Woelderen, BF (1987) Changing insights into human milk proteins: some implications. Nutrition Abstracts and Reviews (Series A) 57, 129134.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed