Skip to main content
×
×
Home

Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women

  • Jonathan M. Hodgson (a1), Richard L. Prince (a2) (a3), Richard J. Woodman (a4), Catherine P. Bondonno (a1), Kerry L. Ivey (a5), Nicola Bondonno (a1), Eric B. Rimm (a5), Natalie C. Ward (a1) (a6), Kevin D. Croft (a1) and Joshua R. Lewis (a7)...
Abstract

Higher fruit intake is associated with lower risk of all-cause and disease-specific mortality. However, data on individual fruits are limited, and the generalisability of these findings to the elderly remains uncertain. The objective of this study was to examine the association of apple intake with all-cause and disease-specific mortality over 15 years in a cohort of women aged over 70 years. Secondary analyses explored relationships of other fruits with mortality outcomes. Usual fruit intake was assessed in 1456 women using a FFQ. Incidence of all-cause and disease-specific mortality over 15 years was determined through the Western Australian Hospital Morbidity Data system. Cox regression was used to determine the hazard ratios (HR) for mortality. During 15 years of follow-up, 607 (41·7 %) women died from any cause. In the multivariable-adjusted analysis, the HR for all-cause mortality was 0·89 (95 % CI 0·81, 0·97) per sd (53 g/d) increase in apple intake, HR 0·80 (95 % CI 0·65, 0·98) for consumption of 5–100 g/d and HR 0·65 (95 % CI 0·48, 0·89) for consumption of >100 g/d (an apple a day), compared with apple intake of <5 g/d (P for trend=0·03). Our analysis also found that higher apple intake was associated with lower risk for cancer mortality, and that higher total fruit and banana intakes were associated lower risk of CVD mortality (P<0·05). Our results support the view that regular apple consumption may contribute to lower risk of mortality.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: J. M. Hodgson, fax +61 8 9224 0246, email jonathan.hodgson@uwa.edu.au
References
Hide All
1. Hodgson, JM & Croft, KD (2010) Tea flavonoids and cardiovascular health. Mol Aspects Med 31, 495502.
2. Hooper, L, Kroon, PA, Rimm, EB, et al. (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88, 3850.
3. Threapleton, DE, Greenwood, DC, Evans, CE, et al. (2013) Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347, f6879.
4. Hyson, DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2, 408420.
5. Boyer, J & Liu, RH (2004) Apple phytochemicals and their health benefits. Nutr J 3, 5.
6. Knekt, P, Kumpulainen, J, Järvinen, R, et al. (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76, 560568.
7. Wang, X, Ouyang, Y, Liu, J, et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349, g4490.
8. Ezzati, M & Riboli, E (2013) Behavioral and dietary risk factors for noncommunicable diseases. N Engl J Med 369, 954964.
9. Renehan, AG & Howell, A (2005) Preventing cancer, cardiovascular disease, and diabetes. Lancet 365, 14491451.
10. Liu, RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr 4, 384S392S.
11. Lichtenstein, AH, Appel, LJ, Brands, M, et al. (2006) Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 114, 8296.
12. Prince, RL, Devine, A, Dhaliwal, SS, et al. (2006) Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Arch Inter Med 166, 869875.
13. Hodge, A, Patterson, AJ, Brown, WJ, et al. (2000) The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z JPublic Health 24, 576583.
14. Ireland, P, Jolley, D, Giles, G, et al. (1994) Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac J Clin Nutr 3, 1931.
15. Ivey, KL, Hodgson, JM, Croft, KD, et al. (2015) Flavonoid intake and all-cause mortality. Am J Clin Nutr 101, 10121020.
16. Ivey, KL, Lewis, JR, Prince, RL, et al. (2013) Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women. Br J Nutr 110, 16481655.
17. World Health Organization (1977) Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death: Based on the Recommendations of the Ninth Revision Conference, 1975, and Adopted by the Twenty-Ninth World Health Assembly, 1975 revision edition. Geneva: WHO.
18. World Health Organization (2004) ICD-10 : International Statistical Classification of Diseases and Related Health Problems: Tenth Revision, 2nd ed. Geneva: WHO.
19. Britt, H, Scahill, S & Miller, G (1997) ICPC PLUS for community health? A feasibility study. Health Inf Manag 27, 171175.
20. Pollock, ML, Wilmore, JH & Fox, SM (1978) Health and Fitness Through Physical Activity. New York, NY: Wiley.
21. McArdle, WD, Katch, FI & Katch, VL (1991) Energy, Nutrition and Human Performance. Philadelphia, PA: Lea & Febiger.
22. Devine, A, Dhaliwal, SS, Dick, IM, et al. (2004) Physical activity and calcium consumption are important determinants of lower limb bone mass in older women. J Bone Miner Res 19, 16341639.
23. Australian Bureau of Statistics (1991) Socio-Economic Indexes for Areas. Canberra: Australian Government Publishing Service.
24. Blekkenhorst, LC, Prince, RL, Hodgson, JM, et al. (2015) Dietary saturated fat intake and atherosclerotic vascular disease mortality in elderly women: a prospective cohort study. Am J Clin Nutr 101, 12631268.
25. Knekt, P, Jarvinen, R, Reunanen, A, et al. (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. Br Med J 312, 478481.
26. Hertog, MGL, Feskens, EJM, Kromhout, D, et al. (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342, 10071011.
27. Mink, PJ, Scrafford, CG, Barraj, LM, et al. (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85, 895909.
28. Yochum, L, Kushi, LH, Meyer, K, et al. (1999) Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol 149, 943949.
29. Larsson, SC, Virtamo, J & Wolk, A (2013) Total and specific fruit and vegetable consumption and risk of stroke: a prospective study. Atherosclerosis 227, 147152.
30. Griep, LMO, Verschuren, WM, Kromhout, D, et al. (2011) Colors of fruit and vegetables and 10-year incidence of stroke. Stroke 42, 31903195.
31. Knekt, P, Järvinen, R, Seppänen, R, et al. (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146, 223230.
32. Feskanich, D, Ziegler, RG, Michaud, DS, et al. (2000) Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst 92, 18121823.
33. Le Marchand, L, Murphy, SP, Hankin, JH, et al. (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92, 154160.
34. Freedman, ND, Park, Y, Subar, AF, et al. (2007) Fruit and vegetable intake and esophageal cancer in a large prospective cohort study. Int J Cancer 121, 27532760.
35. Gallus, S, Talamini, R, Giacosa, A, et al. (2005) Does an apple a day keep the oncologist away? Ann Oncol 16, 18411844.
36. Hui, C, Qi, X, Qianyong, Z, et al. (2013) Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLOS ONE 8, e54318.
37. Huxley, RR & Neil, HA (2003) The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 57, 904908.
38. Bondonno, CP, Croft, KD, Ward, N, et al. (2015) Dietary flavonoids and nitrate: effects on nitric oxide and vascular function. Nutr Rev 73, 216235.
39. Bondonno, CP, Yang, X, Croft, KD, et al. (2002) Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med 52, 95102.
40. Streppel, MT, Ocké, MC, Boshuizen, HC, et al. (2008) Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y: the Zutphen Study. Am J Clin Nutr 88, 11191125.
41. Aune, D, Chan, DS, Lau, R, et al. (2011) Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343, d6617.
42. Theuwissen, E & Mensink, RP (2008) Water-soluble dietary fibers and cardiovascular disease. Physiol Behav 94, 285292.
43. Kobylecki, CJ, Afzal, S, Smith, GD, et al. (2015) Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality: a Mendelian randomization study. Am J Clin Nutr 101, 11351143.
44. Yang, Q, Liu, T, Kuklina, EV, et al. (2011) Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 171, 11831191.
45. Leone, N, Courbon, D, Ducimetiere, P, et al. (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17, 308314.
46. Cardona, F, Andrés-Lacueva, C, Tulipani, S, et al. (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24, 14151422.
47. Koutsos, A, Tuohy, KM & Lovegrove, JA (2015) Apples and cardiovascular health–is the gut microbiota a core consideration? Nutrients 7, 39593998.
48. Cho, I & Blaser, MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13, 260270.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed