Skip to main content Accessibility help
×
Home

Dietary intake of total marine n-3 polyunsaturated fatty acids, eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid and the risk of acute coronary syndrome – a cohort study

  • Albert M. Joensen (a1) (a2), Erik B. Schmidt (a1) (a2), Claus Dethlefsen (a2), Søren P. Johnsen (a3), Anne Tjønneland (a4), Lars H. Rasmussen (a1) and Kim Overvad (a1)...

Abstract

Dietary intake of marine n-3 PUFA has been negatively associated with the risk of CHD among subjects with known CHD, whereas an effect in healthy subjects is less documented. We assessed the hypothesis that dietary intake of marine n-3 PUFA is negatively associated with the risk of acute coronary syndrome (ACS) in healthy subjects. In the Danish Diet, Cancer and Health cohort study, 57 053 participants were enrolled. Dietary intake of total n-3 PUFA, including EPA, docosapentaenoic acid (DPA) and DHA, was assessed. During a mean follow-up period of 7·6 years, we identified all cases (n 1150) from this cohort with an incident ACS diagnosis in the Danish National Patient Registry or the Cause of Death Registry. Diagnoses were verified through medical record review. In Cox proportional hazard models, we adjusted for established risk factors for CHD. Men in the four highest quintiles of n-3 PUFA intake (>0·39 g n-3 PUFA per d) had a lower incidence of ACS compared with men in the lowest quintile. The hazard ratio was 0·83 (95 % CI 0·67, 1·03) when we compared men in the second lowest and lowest quintile of n-3 PUFA intake. Higher intake of n-3 PUFA did not strengthen this association. Associations for EPA, DPA and DHA were all negative, but less consistent. No convincing associations were found among women. In conclusion, we found borderline significant negative associations between the intake of marine n-3 PUFA and ACS among healthy men.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary intake of total marine n-3 polyunsaturated fatty acids, eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid and the risk of acute coronary syndrome – a cohort study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary intake of total marine n-3 polyunsaturated fatty acids, eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid and the risk of acute coronary syndrome – a cohort study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary intake of total marine n-3 polyunsaturated fatty acids, eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid and the risk of acute coronary syndrome – a cohort study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr A. M. Joensen, fax +45 99326861, email albert.marni.joensen@rn.dk

References

Hide All
1Beaglehole, R (1999) International trends in coronary heart disease mortality and incidence rates. J Cardiovasc Risk 6, 6368.
2Albert, CM, Hennekens, CH, O'Donnell, CJ, et al. (1998) Fish consumption and risk of sudden cardiac death. JAMA 279, 2328.
3Marchioli, R, Barzi, F, Bomba, E, et al. (2002) Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation 105, 18971903.
4Siscovick, DS, Raghunathan, TE, King, I, et al. (1995) Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 274, 13631367.
5Christensen, JH & Schmidt, EB (2001) n-3 Fatty acids and the risk of sudden cardiac death. Lipids 36, Suppl., S115S118.
6Daviglus, ML, Stamler, J, Orencia, AJ, et al. (1997) Fish consumption and the 30-year risk of fatal myocardial infarction. N Engl J Med 336, 10461053.
7Yuan, JM, Ross, RK, Gao, YT, et al. (2001) Fish and shellfish consumption in relation to death from myocardial infarction among men in Shanghai, China. Am J Epidemiol 154, 809816.
8Kromhout, D, Bosschieter, EB & de Lezenne, CC (1985) The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med 312, 12051209.
9Bucher, HC, Hengstler, P, Schindler, C, et al. (2002) n-3 Polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am J Med 112, 298304.
10Hooper, L, Thompson, RL, Harrison, RA, et al. (2006) Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 332, 752760.
11Wang, C, Harris, WS, Chung, M, et al. (2006) n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 84, 517.
12Burr, ML, Fehily, AM, Gilbert, JF, et al. (1989) Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet ii, 757761.
13Burr, ML, Ashfield-Watt, PA, Dunstan, FD, et al. (2003) Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr 57, 193200.
14Yokoyama, M, Origasa, H, Matsuzaki, M, et al. (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369, 10901098.
15Svensson, M, Schmidt, EB, Jorgensen, KA, et al. (2006) n-3 Fatty acids as secondary prevention against cardiovascular events in patients who undergo chronic hemodialysis: a randomized, placebo-controlled intervention trial. Clin J Am Soc Nephrol 1, 780786.
16Schmidt, EB, Arnesen, H, de Caterina, R, et al. (2005) Marine n-3 polyunsaturated fatty acids and coronary heart disease. Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb Res 115, 163170.
17Robinson, JG & Stone, NJ (2006) Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. Am J Cardiol 98, 39i49i.
18Ascherio, A, Rimm, EB, Stampfer, MJ, et al. (1995) Dietary intake of marine n-3 fatty acids, fish intake, and the risk of coronary disease among men. N Engl J Med 332, 977982.
19Pietinen, P, Ascherio, A, Korhonen, P, et al. (1997) Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Epidemiol 145, 876887.
20Hu, FB, Bronner, L, Willett, WC, et al. (2002) Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 287, 18151821.
21Iso, H, Kobayashi, M, Ishihara, J, et al. (2006) Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 113, 195202.
22Tavani, A, Pelucchi, C, Negri, E, et al. (2001) n-3 Polyunsaturated fatty acids, fish, and nonfatal acute myocardial infarction. Circulation 104, 22692272.
23Harris, WS, Poston, WC & Haddock, CK (2007) Tissue n-3 and n-6 fatty acids and risk for coronary heart disease events. Atherosclerosis 193, 110.
24Block, RC, Harris, WS, Reid, KJ, et al. (2008) EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis 197, 821828.
25Harris, WS, Reid, KJ, Sands, SA, et al. (2007) Blood omega-3 and trans fatty acids in middle-aged acute coronary syndrome patients. Am J Cardiol 99, 154158.
26Sun, Q, Ma, J, Campos, H, et al. (2008) Blood concentrations of individual long-chain n-3 fatty acids and risk of nonfatal myocardial infarction. Am J Clin Nutr 88, 216223.
27Aarsetoey, H, Ponitz, V, Grundt, H, et al. (2009) (n-3) Fatty acid content of red blood cells does not predict risk of future cardiovascular events following an acute coronary syndrome. J Nutr 139, 507513.
28Tjonneland, A, Olsen, A, Boll, K, et al. (2007) Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57 053 men and women in Denmark. Scand J Public Health 35, 432441.
29Tjonneland, A, Overvad, K, Haraldsdottir, J, et al. (1991) Validation of a semiquantitative food frequency questionnaire developed in Denmark. Int J Epidemiol 20, 906912.
30Overvad, K, Tjonneland, A, Haraldsdottir, J, et al. (1991) Development of a semiquantitative food frequency questionnaire to assess food, energy and nutrient intake in Denmark. Int J Epidemiol 20, 900905.
31Joensen, AM, Jensen, MK, Overvad, K, et al. (2009) Predictive values of acute coronary syndrome discharge diagnoses differed in the Danish National Patient Registry. J Clin Epidemiol 62, 188194.
32Luepker, RV, Apple, FS, Christenson, RH, et al. (2003) Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 108, 25432549.
33Tjonneland, A, Overvad, K, Thorling, E, et al. (1993) Adipose tissue fatty acids as biomarkers of dietary exposure in Danish men and women. Am J Clin Nutr 57, 629633.
34Cundiff, DK, Lanou, AJ & Nigg, CR (2007) Relation of omega-3 fatty acid intake to other dietary factors known to reduce coronary heart disease risk. Am J Cardiol 99, 12301233.
35Anand, SS, Islam, S, Rosengren, A, et al. (2008) Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J 29, 932940.
36Shaw, LJ, Bairey Merz, CN, Pepine, CJ, et al. (2006) Insights from the NHLBI-sponsored Women's Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol 47, Suppl. 3, S4S20.
37Lovlien, M, Schei, B & Hole, T (2006) Women with myocardial infarction are less likely than men to experience chest symptoms. Scand Cardiovasc J 40, 342347.
38Elsaesser, A & Hamm, CW (2004) Acute coronary syndrome: the risk of being female. Circulation 109, 565567.
39Quyyumi, AA (2006) Women and ischemic heart disease: pathophysiologic implications from the Women's Ischemia Syndrome Evaluation (WISE) Study and future research steps. J Am Coll Cardiol 47, Suppl. 3, S66S71.
40Arterburn, LM, Hall, EB & Oken, H (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83, Suppl. 6, 1467S1476S.
41Gerster, H (1998) Can adults adequately convert α-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res 68, 159173.
42Grimsgaard, S, Bonaa, KH, Hansen, JB, et al. (1997) Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids. Am J Clin Nutr 66, 649659.
43Grimsgaard, S, Bonaa, KH, Hansen, JB, et al. (1998) Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on hemodynamics in humans. Am J Clin Nutr 68, 5259.
44Simon, JA, Hodgkins, ML, Browner, WS, et al. (1995) Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol 142, 469476.
45Pedersen, JI, Ringstad, J, Almendingen, K, et al. (2000) Adipose tissue fatty acids and risk of myocardial infarction – a case–control study. Eur J Clin Nutr 54, 618625.
46Virtanen, JK, Voutilainen, S, Rissanen, TH, et al. (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25, 228233.
47König, A, Bouzan, C, Cohen, JT, et al. (2005) A quantitative analysis of fish consumption and coronary heart disease mortality. Am J Prev Med 29, 335346.
48Christensen, JH, Christensen, MS, Dyerberg, J, et al. (1999) Heart rate variability and fatty acid content of blood cell membranes: a dose–response study with n-3 fatty acids. Am J Clin Nutr 70, 331337.
49Breslow, JL (2006) n-3 Fatty acids and cardiovascular disease. Am J Clin Nutr 83, Suppl. 6, 1477S1482S.
50He, K, Song, Y, Daviglus, ML, et al. (2004) Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation 109, 27052711.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed