Skip to main content Accesibility Help

Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers

  • Weiwei Wang (a1), Zhui Li (a1), Qiqi Han (a1), Yuming Guo (a1), Bo Zhang (a2) and Romain D’inca (a3)...

The effects of live yeast (LY) and mannan-oligosaccharide (MOS) supplementation on intestinal disruption induced by Escherichia coli in broilers were investigated. The experimental design was a 3×2 factorial arrangement with three dietary treatments (control, 0·5 g/kg LY (Saccharomyces cerevisiae, 1·0×1010 colony-forming units/g), 0·5 g/kg MOS) and two immune treatments (with or without E. coli challenge from 7 to 11 d of age). Samples were collected at 14 d of age. The results showed that E. coli challenge impaired (P<0·05) growth performance during the grower period (1–21 d) and the overall period (1–35 d) of broilers, increased (P<0·05) serum endotoxin and diamine oxidase levels coupled with ileal myeloperoxidase and lysozyme activities, whereas reduced (P<0·05) maltase activity, and compromised the morphological structure of the ileum. Besides, it increased (P<0·05) the mRNA expressions of several inflammatory genes and reduced occludin expression in the ileum. Dietary treatment with both LY and MOS reduced (P<0·05) serum diamine oxidase and ileal myeloperoxidase levels, but elevated villus height (P<0·10) and the ratio of villus height:crypt depth (P<0·05) of the ileum. It also alleviated (P<0·05) E. coli-induced increases (P<0·05) in ileal Toll-like receptor 4, NF-κ B and IL-1 β expressions. Moreover, LY supplementation reduced (P<0·05) feed conversion ratio of birds during the grower period and enhanced (P<0·05) the community diversity (Shannon and Simpson indices) of ileal microbiota, whereas MOS addition counteracted (P<0·05) the decreased ileal IL-10 and occludin expressions in challenged birds. In conclusion, both LY and MOS supplementation could attenuate E. coli-induced intestinal disruption by alleviating intestinal inflammation and barrier dysfunction in broilers. Moreover, LY addition could improve intestinal microbial community structure and feed efficiency of broilers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers
      Available formats
Corresponding author
* Corresponding author: Y. Guo, fax +86 010 6273 2712, email
Hide All
1. He, CL, Fu, BD, Shen, HQ, et al. (2011) Xiang-Qi-Tang increases avian pathogenic Escherichia coli-induced survival rate and regulates serum levels of tumor necrosis factor alpha, interleukin-1 and soluble endothelial protein C receptor in chicken. Biol Pharm Bull 34, 379382.
2. Cao, GT, Zeng, XF, Chen, AG, et al. (2013) Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 92, 29492955.
3. Gao, Y, Han, F, Huang, X, et al. (2013) Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins, and cytokine production between two pig breeds after challenge with Escherichia coli K88: a comparative study. J Anim Sci 91, 56145625.
4. Ribeiro, AML, Vogt, LK, Canal, CW, et al. (2007) Effects of prebiotics and probiotics on the colonization and immune response of broiler chickens challenged with Salmonella enteritidis . Braz J Poult Sci 9, 193200.
5. Yang, Y, Iji, PA, Kocher, A, et al. (2008) Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli challenge. Br Poult Sci 49, 550559.
6. Levkut, M, Revajová, V, Lauková, A, et al. (2012) Leukocytic responses and intestinal mucin dynamics of broilers protected with Enterococcus faecium EF55 and challenged with Salmonella enteritidis . Res Vet Sci 93, 195201.
7. Penha-Filho, RAC, Díazb, SJA, Fernando, FS, et al. (2015) Immunomodulatory activity and control of Salmonella enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet Immunol Immunopathol 167, 6469.
8. Spring, P, Wenk, C, Dawson, KA, et al. (2000) The effects of dietary mannan oligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci 79, 205211.
9. Baurhoo, B, Letellier, A, Zhao, X, et al. (2007) Cecal populations of Lactobacilli and Bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci 86, 25092516.
10. Abudabos, AM & Yehia, HM (2013) Effect of dietary mannan oligosaccharide from Saccharomyces cerevisiae on live performance of broilers under Clostridium perfringens challenge. Ital J Anim Sci 12, 231235.
11. Heugten, EV, Funderburke, DW & Dorton, KL (2003) Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J Anim Sci 81, 10041012.
12. Haldar, S, Ghosha, TK, Toshiwatia, , et al. (2011) Effects of yeast (Saccharomyces cerevisiae) and yeast protein concentrate on production performance of broiler chickens exposed to heat stress and challenged with Salmonella enteritidis . Anim Feed Sci Technol 168, 6171.
13. Xiong, X, Yang, HS, Li, B, et al. (2015) Dietary supplementation with yeast product improves intestinal function, and serum and ileal amino acid contents in weaned piglets. Livest Sci 171, 2027.
14. Jang, YD, Kang, KW, Piao, LG, et al. (2013) Effects of live yeast supplementation to gestation and lactation diets on reproductive performance, immunological parameters and milk composition in sows. Livest Sci 152, 167173.
15. Badia, R, Lizardo, R, Martinez, P, et al. (2012) The influence of dietary locust bean gum and live yeast on some digestive immunological parameters of piglets experimentally challenged with Escherichia coli . J Anim Sci 90, 260262.
16. Trckova, M, Faldyna, M, Alexa, P, et al. (2014) The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. J Anim Sci 92, 767774.
17. Trevisi, P, Colombo, M, Priori, D, et al. (2015) Comparison of three patterns of feed supplementation with live yeast on postweaning diarrhea, health status, and blood metabolic profile of susceptible weaning pigs orally challenged with F4ac. J Anim Sci 93, 22252233.
18. Jawhara, S, Habib, K, Maggiotto, F, et al. (2012) Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti inflammatory role of glucan fractions. PLOS ONE 7, e40648.
19. Zanello, G, Berri, M, Dupont, J, et al. (2011) Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS ONE 6, e18573.
20. Zanello, G, Meurens, F, Berri, M, et al. (2011) Saccharomyces cerevisiae decreases inflammatory responses induced by F4(+) enterotoxigenic Escherichia coli in porcine intestinal epithelial cells. Vet Immunol Immunopathol 141, 133138.
21. Lamb-Rosteski, JM, Kalischuk, LD, Inglis, GD, et al. (2008) Epidermal growth factor inhibits Campylobacter jejuni induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation. Infect Immun 76, 33903398.
22. Fleige, S & Pfaffl, MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27, 126139.
23. Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402408.
24. Santos, EG, Costa, FGP, Silva, JHV, et al. (2012) Protective effect of mannan oligosaccharides against early colonization by Salmonella enteritidis in chicks is improved by higher dietary threonine levels. J Appl Microbiol 114, 11581165.
25. Rezaeipour, V, Fononi, H & Irani, M (2012) Effects of dietary L-threonine and Saccharomyces cerevisiae on performance, intestinal morphology and immune response of broiler chickens. S Afr J Anim Sci 42, 266273.
26. Uni, Z (1999) Functional development of the small intestine in domestic birds: cellular and molecular aspects. Poult Avian Biol Rev 10, 167179.
27. Luk, GD, Bayless, TM & Baylin, SB (1980) Diamine oxidase (histaminase)-a circulating marker for rat intestinal mucosal maturation and integrity. J Clin Invest 66, 6670.
28. Mani, V, Weber, TE, Baumgard, LH, et al. (2012) Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci 90, 14521465.
29. Tan, JZ, Applegate, TJ, Liu, SS, et al. (2014) Supplemental dietary L-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens. Br J Nutr 112, 10981109.
30. Cheled-Shoval, SL, Amit-Romach, E, Barbakov, M, et al. (2011) The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre- and posthatch periods in chickens. Poult Sci 90, 23012310.
31. Jiang, ZY, Wei, SY, Wang, ZB, et al. (2015) Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J Anim Sci Biotechnol 6, 47.
32. Ballard, ST, Hunter, JH & Taylor, AE (1995) Regulation of tight junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr 15, 3555.
33. Ewaschuk, JB, Murdoch, GK, Johnson, IR, et al. (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106, 870877.
34. Zhang, BK & Guo, YM (2009) Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr 102, 687693.
35. Zhou, XL, Kong, XF, Lian, GQ, et al. (2014) Dietary supplementation with soybean oligosaccharides increases short-chain fatty acids but decreases protein-derived catabolites in the intestinal luminal content of weaned Huanjiang mini-piglets. Nutr Res 34, 780788.
36. Alizadeh, A, Akbari, P, Difilippo, E, et al. (2016) The piglet as a model for studying dietary components in infant diets: effects of galacto-oligosaccharides on intestinal functions. Br J Nutr 115, 605618.
37. Dong, ZL, Wang, YW, Song, D, et al. (2016) The effects of dietary supplementation of pre-microencapsulated Enterococcus fecalis and the extract of Camellia oleifera seed on growth performance, intestinal morphology, and intestinal mucosal immune functions in broiler chickens. Anim Feed Sci Technol 212, 4251.
38. Rajput, IR, Li, LY, Xin, X, et al. (2013) Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult Sci 92, 956965.
39. Li, Y, Zhang, H, Chen, YP, et al. (2015) Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim Feed Sci Technol 208, 119131.
40. Dobrovolskaia, MA & Vogel, SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4, 903914.
41. Dinarello, CA (2000) Proinflammatory cytokines. Chest 118, 503508.
42. MacKinnon, KM, He, H, Nerren, JR, et al. (2009) Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteriditis-infected broiler chickens. Vet Microbiol 137, 313319.
43. Gong, Y, Hart, E, Shchurin, A, et al. (2008) Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest 118, 30123024.
44. Persson, K, Carlsson, A, Hambleton, C, et al. (1992) Immunoglobulins, lysozyme and lactoferrin in the teat and udder of the dry cow during endotoxin-induced inflammation. J Vet Med 39, 165174.
45. Lavi, I, Levinson, D, Peri, I, et al. (2010) Orally administered glucans from the edible mushroom Pleurotus pulmonarius reduce acute inflammation in dextran sulfate sodium-induced experimental colitis. Br J Nutr 103, 393402.
46. Che, TM, Johnson, RW, Kelley, KW, et al. (2012) Effects of mannan oligosaccharide on cytokine secretions by porcine alveolar macrophages and serum cytokine concentrations in nursery pigs. J Anim Sci 90, 657668.
47. Liu, Y, Huang, J, Hou, Y, et al. (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100, 552560.
48. Corwin, EJ (2000) Understanding cytokines part I: physiology and mechanisms of action. Biol Res Nurs 2, 3040.
49. Sekirov, I, Russell, SL, Antunes, LC, et al. (2010) Gut microbiota in health and disease. Physiol Rev 90, 859904.
50. Santacruz, A, Collado, MC, Garcia-Valdes, L, et al. (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104, 8392.
51. Hakansson, A & Molin, G (2011) Gut microbiota and inflammation. Nutrients 3, 637682.
52. Singh, KM, Shah, T, Deshpande, S, et al. (2012) High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol Biol Rep 39, 595602.
53. Videnska, P, Sisak, F, Havlickova, H, et al. (2013) Influence of Salmonella enterica serovar enteritidis infection on the composition of chicken cecal microbiota. BMC Vet Res 9, 140.
54. Kim, GB, Seo, YM, Kim, CH, et al. (2011) Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci 90, 7582.
55. Corrigan, A, de-Leeuw, M, Penaud-Frézet, S, et al. (2015) Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Appl Environ Microb 81, 34603470.
56. de Oliveira, JE, van der Hoeven-Hangoor, E, van de Linde, IB, et al. (2014) In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility. Poult Sci 93, 818829.
57. Ruiu, L, Satta, A & Floris, I (2014) Administration of Brevibacillus laterosporus spores as a poultry feed additive to inhibit house fly development in feces: a new eco-sustainable concept. Poult Sci 93, 519526.
58. Sanders, ME, Morelli, L & Tompkins, TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus . Compr Rev Food Sci F 2, 101110.
59. Samli, HE, Senkoylu, N, Koc, F, et al. (2007) Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Arch Anim Nutr 61, 4249.
60. Li, Y, Xu, Q, Huang, Z, et al. (2015) Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. J Appl Microbiol 120, 195204.
61. Ott, SJ, Musfeldt, M, Wenderoth, DF, et al. (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685693.
62. Nitzan, O, Elias, M, Peretz, A, et al. (2016) Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol 22, 5061.
63. Semova, I, Carten, JD, Stombaugh, J, et al. (2011) Microbiota regulate intestinal absorption and metabolism of fatty acids in the Zebrafish. Cell Host Microbe 12, 277288.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed