Skip to main content
×
×
Home

Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study

  • Giuseppe Grosso (a1) (a2), Urszula Stepaniak (a2), Agnieszka Micek (a2), Magdalena Kozela (a2), Denes Stefler (a3), Martin Bobak (a3) and Andrzej Pajak (a2)...
Abstract

This study aimed to test the association between dietary content of total and individual classes of polyphenols and incident cases of type 2 diabetes in Polish adults participating to the Health, Alcohol and Psychosocial factors In Eastern Europe study. At baseline, diet by 148-item FFQ and health information were collected from 5806 participants free of diabetes. Self-reported incident type 2 diabetes was ascertained at 2–4-year follow-up visit. OR and 95 % CI of type 2 diabetes comparing the various categories of polyphenol intake to the lowest one (reference category) and as 1 sd increase modelled as continuous variable were calculated by performing age-, energy-, and multivariate-adjusted logistic regression models. During the follow-up, 456 incident cases of type 2 diabetes occurred. When comparing extreme quartiles, intake of total polyphenol was inversely associated with the risk of type 2 diabetes (OR 0·43; 95 % CI 0·30, 0·61); 1 sd increase was associated with a reduced risk of diabetes (OR 0·68; 95 % CI 0·59, 0·79). Among the main classes of polyphenols, flavonoids, phenolic acids, and stilbenes were independent contributors to this association. Both subclasses of phenolic acids were associated with decreased risk of type 2 diabetes, whereas among subclasses of flavonoids, high intake of flavanols, flavanones, flavones and anthocyanins was significantly associated with decreased risk of type 2 diabetes. Total dietary polyphenols and some classes of dietary polyphenols were associated with lower risk of type 2 diabetes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
* Corresponding author: G. Grosso, fax +39 0953782177, email giuseppe.grosso@studium.unict.it
References
Hide All
1. Maghsoudi, Z, Ghiasvand, R & Salehi-Abargouei, A (2016) Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies. Public Health Nutr 19, 230241.
2. Amiot, MJ, Riva, C & Vinet, A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17, 573586.
3. Del Rio, D, Rodriguez-Mateos, A, Spencer, JP, et al. (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18, 18181892.
4. Stedile, N, Canuto, R, de Col, CD, et al. (2016) Dietary total antioxidant capacity is associated with plasmatic antioxidant capacity, nutrient intake and lipid and DNA damage in healthy women. Int J Food Sci Nutr 67, 479488.
5. Liu, YJ, Zhan, J, Liu, XL, et al. (2014) Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 33, 5963.
6. Peasey, A, Bobak, M, Kubinova, R, et al. (2006) Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health 6, 255.
7. Brunner, E, Stallone, D, Juneja, M, et al. (2001) Dietary assessment in Whitehall II: comparison of 7 d diet diary and food-frequency questionnaire and validity against biomarkers. Br J Nutr 86, 405414.
8. Willett, WC, Sampson, L, Stampfer, MJ, et al. (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 5165.
9. Phenol-Explorer (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. http://www.phenol-explorer.eu (accessed August 2016).
10. Grosso, G, Stepaniak, U, Topor-Madry, R, et al. (2014) Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 30, 13981403.
11. Shin, JY, Kim, JY, Kang, HT, et al. (2015) Effect of fruits and vegetables on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr 66, 416425.
12. Marventano, S, Salomone, F, Godos, J, et al. (2016) Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin Nutr 35, 12691281.
13. Grosso, G, Stepaniak, U, Micek, A, et al. (2016) Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr 56, 14091420.
14. Grosso, G, Stepaniak, U, Micek, A, et al. (2015) A Mediterranean-type diet is associated with better metabolic profile in urban Polish adults: results from the HAPIEE study. Metabolism 64, 738746.
15. Stefler, D, Pikhart, H, Jankovic, N, et al. (2014) Healthy diet indicator and mortality in Eastern European populations: prospective evidence from the HAPIEE cohort. Eur J Clin Nutr 68, 13461352.
16. Stepaniak, U, Micek, A, Grosso, G, et al. (2016) Antioxidant vitamin intake and mortality in three Central and Eastern European urban populations: the HAPIEE study. Eur J Nutr 55, 547560.
17. Wedick, NM, Pan, A, Cassidy, A, et al. (2012) Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 95, 925933.
18. Jacques, PF, Cassidy, A, Rogers, G, et al. (2013) Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 143, 14741480.
19. Zamora-Ros, R, Forouhi, NG, Sharp, SJ, et al. (2014) Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr 144, 335343.
20. Nettleton, JA, Harnack, LJ, Scrafford, CG, et al. (2006) Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. J Nutr 136, 30393045.
21. Song, Y, Manson, JE, Buring, JE, et al. (2005) Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24, 376384.
22. Zheng, XX, Xu, YL, Li, SH, et al. (2013) Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. Am J Clin Nutr 97, 750762.
23. Munir, KM, Chandrasekaran, S, Gao, F, et al. (2013) Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. Am J Physiol Endocrinol Metab 305, E679E686.
24. Sasaki, R, Nishimura, N, Hoshino, H, et al. (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 74, 16191627.
25. Scazzocchio, B, Vari, R, Filesi, C, et al. (2011) Cyanidin-3-O-beta-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARgamma activity in human omental adipocytes. Diabetes 60, 22342244.
26. Takikawa, M, Inoue, S, Horio, F, et al. (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr 140, 527533.
27. InterAct, C, van Woudenbergh, GJ, Kuijsten, A, et al. (2012) Tea consumption and incidence of type 2 diabetes in Europe: the EPIC-InterAct case-cohort study. PLOS ONE 7, e36910.
28. Buscemi, S, Marventano, S, Antoci, M, et al. (2016) Coffee and metabolic impairment: An updated review of epidemiological studies. NFS Journal 3, 17.
29. Grosso, G, Stepaniak, U, Micek, A, et al. (2015) Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr 54, 11291137.
30. Jiang, X, Zhang, D & Jiang, W (2014) Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr 53, 2538.
31. Godos, J, Pluchinotta, FR, Marventano, S, et al. (2014) Coffee components and cardiovascular risk: beneficial and detrimental effects. Int J Food Sci Nutr 65, 925936.
32. Meng, S, Cao, J, Feng, Q, et al. (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013, 801457.
33. Riccioni, G, Gammone, MA, Tettamanti, G, et al. (2015) Resveratrol and anti-atherogenic effects. Int J Food Sci Nutr 66, 603610.
34. Hausenblas, HA, Schoulda, JA & Smoliga, JM (2015) Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus – systematic review and meta-analysis. Mol Nutr Food Res 59, 147159.
35. Liu, K, Zhou, R, Wang, B, et al. (2014) Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 99, 15101519.
36. Reinisalo, M, Karlund, A, Koskela, A, et al. (2015) Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev 2015, 340520.
37. Gencoglu, H, Tuzcu, M, Hayirli, A, et al. (2015) Protective effects of resveratrol against streptozotocin-induced diabetes in rats by modulation of visfatin/sirtuin-1 pathway and glucose transporters. Int J Food Sci Nutr 66, 314320.
38. Petrovski, G, Gurusamy, N & Das, DK (2011) Resveratrol in cardiovascular health and disease. Ann N Y Acad Sci 1215, 2233.
39. Ding, M, Franke, AA, Rosner, BA, et al. (2015) Urinary isoflavonoids and risk of type 2 diabetes: a prospective investigation in US women. Br J Nutr 114, 16941701.
40. Sun, Q, Wedick, NM, Pan, A, et al. (2014) Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: a prospective investigation in two cohorts of U.S. women. Diabetes Care 37, 12871295.
41. Ko, KP, Kim, CS, Ahn, Y, et al. (2015) Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: results from the Korean Genome and Epidemiology Study. Diabetologia 58, 726735.
42. Ding, M, Pan, A, Manson, JE, et al. (2016) Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr 70, 13811387.
43. Zamora-Ros, R, Forouhi, NG, Sharp, SJ, et al. (2013) The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in European populations: the EPIC-InterAct study. Diabetes Care 36, 39613970.
44. Chen, CY, Kamil, A & Blumberg, JB (2015) Phytochemical composition and antioxidant capacity of whole wheat products. Int J Food Sci Nutr 66, 6370.
45. Billinsky, J, Glew, RA, Cornish, SM, et al. (2013) No evidence of hypoglycemia or hypotension in older adults during 6 months of flax lignan supplementation in a randomized controlled trial: a safety evaluation. Pharm Biol 51, 778782.
46. Wu, JH, Hodgson, JM, Puddey, IB, et al. (2009) Sesame supplementation does not improve cardiovascular disease risk markers in overweight men and women. Nutr Metab Cardiovasc Dis 19, 774780.
47. Liu, ZM, Chen, YM & Ho, SC (2011) Effects of soy intake on glycemic control: a meta-analysis of randomized controlled trials. Am J Clin Nutr 93, 10921101.
48. van der Velpen, V, Hollman, PC, van Nielen, M, et al. (2014) Large inter-individual variation in isoflavone plasma concentration limits use of isoflavone intake data for risk assessment. Eur J Clin Nutr 68, 11411147.
49. Talaei, M & Pan, A (2015) Role of phytoestrogens in prevention and management of type 2 diabetes. World J Diabetes 6, 271283.
50. Galea, S & Tracy, M (2007) Participation rates in epidemiologic studies. Ann Epidemiol 17, 643653.
51. Nohr, EA, Frydenberg, M, Henriksen, TB, et al. (2006) Does low participation in cohort studies induce bias? Epidemiology 17, 413418.
52. Huerta, JM, Tormo, MJ, Egea-Caparros, JM, et al. (2009) Accuracy of self-reported diabetes, hypertension and hyperlipidemia in the adult Spanish population. DINO study findings. Rev Esp Cardiol 62, 143152.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Grosso supplementary material
Tables S1-S5

 Word (105 KB)
105 KB