Skip to main content
×
×
Home

Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs

  • Liufeng Zheng (a1), Fangrui Zuo (a1), Shengjun Zhao (a2), Pingli He (a3), Hongkui Wei (a1) (a4), Quanhang Xiang (a1), Jiaman Pang (a1) and Jian Peng (a1) (a4)...
Abstract

Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: J. Peng, fax +86 27 8728 1378, email pengjian@mail.hzau.edu.cn
References
Hide All
1. Shavlakadze, T & Grounds, M (2006) Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 28, 9941009.
2. Louard, RJ, Barrett, EJ & Gelfand, RA (1990) Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clin Sci (Lond) 79, 457466.
3. Nagasawa, T, Kido, T, Yoshizawa, F, et al. (2002) Rapid suppression of protein degradation in skeletal muscle after oral feeding of leucine in rats. J Nutr Biochem 13, 121127.
4. Escobar, J, Frank, JW, Suryawan, A, et al. (2006) Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab 290, E612E621.
5. Columbus, DA, Fiorotto, ML & Davis, TA (2015) Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 47, 259270.
6. Zheng, L, Wei, H, Cheng, C, et al. (2016) Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect. Br J Nutr 115, 22362245.
7. Columbus, DA, Steinhoff-Wagner, J, Suryawan, A, et al. (2015) Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs. Am J Physiol Endocrinol Metab 309, E601E610.
8. Manjarín, R, Columbus, DA, Suryawan, A, et al. (2016) Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs. Amino Acids 48, 257267.
9. Jourdan, M, Deutz, NE, Cynober, L, et al. (2013) Consequences of age-related splanchnic sequestration of leucine on interorgan glutamine metabolism in old rats. J Appl Physiol (1985) 115, 229234.
10. Deutz, NEP, Bruins, MJ & Soeters, PB (1998) Infusion of soy and casein protein meals affects interorgan amino acid metabolism and urea kinetics differently in pigs. J Nutr 128, 24352445.
11. Thivierge, MC, Bush, JA, Suryawan, A, et al. (2008) Positive net movements of amino acids in the hindlimb after overnight food deprivation contribute to sustaining the elevated anabolism of neonatal pigs. J Appl Physiol(1985) 105, 19591966.
12. Shimomura, Y, Yamamoto, Y, Bajotto, G, et al. (2006) Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr 136, 529S532S.
13. Harper, AE, Miller, RH & Block, KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4, 409454.
14. Holeček, M (2002) Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition 18, 130133.
15. Li, P, Knabe, DA, Kim, SW, et al. (2009) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139, 15021509.
16. Stoll, B & Burrin, D (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84, E60E72.
17. Wu, G, Bazer, FW, Burghardt, RC, et al. (2010) Functional amino acids in swine nutrition and production. In Dynamics in Animal Nutrition, pp. 6998 [J Doppenberg and P van der Aar, editors]. The Netherlands: Wageningen Academic Publishers.
18. Escobar, J, Frank, JW, Suryawan, A, et al. (2010) Leucine and α-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 140, 14181424.
19. Nakashima, K, Yakabe, Y, Ishida, A, et al. (2007) Suppression of myofibrillar proteolysis in chick skeletal muscles by α-ketoisocaproate. Amino Acids 33, 499503.
20. Jones, DP, Park, Y & Ziegler, TR (2012) Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr 32, 183.
21. Paris, LP, Johnson, CH, Aguilar, E, et al. (2016) Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics 12, 110.
22. Brennan, L (2013) Metabolomics in nutrition research: current status and perspectives. Biochem Soc Trans 41, 670673.
23. National Research Council (NRC) (2012) Nutrient Requirements of Swine, 11th rev. ed. Washington, DC: The National Academies Press.
24. National Research Council (NRC) (1998) Nutrient Requirements of Swine, 10th rev. ed. Washington, DC: The National Academies Press.
25. Fang, ZF, Luo, J, Qi, ZL, et al. (2009) Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets. Amino Acids 36, 501509.
26. Stoll, B, Henry, J, Reeds, PJ, et al. (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128, 606614.
27. Ettrup, KS, Glud, AN, Orlowski, D, et al. (2011) Basic surgical techniques in the Göttingen minipig: intubation, bladder catheterization, femoral vessel catheterization, and transcardial perfusion. J Vis Exp 52, 2652.
28. Riedijk, MA, Stoll, B, Chacko, S, et al. (2007) Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci U S A 104, 34083413.
29. Yin, B, Li, T, Li, Z, et al. (2015) Determination of melatonin and its metabolites in biological fluids and eggs using high-performance liquid chromatography with fluorescence and quadrupole-orbitrap high-resolution mass spectrometry. Food Anal Method 9, 11421149.
30. Olson, KC, Chen, G & Lynch, CJ (2013) Quantification of branched-chain keto acids in tissue by ultra fast liquid chromatography-mass spectrometry. Anal Biochem 439, 116122.
31. Lin, G, Liu, C, Feng, C, et al. (2012) Metabolomic analysis reveals differences in umbilical vein plasma metabolites between normal and growth-restricted fetal pigs during late gestation. J Nutr 142, 990998.
32. Ten have, GAM, Bost, MCF, Suyk-Wierts, JCAW, et al. (1996) Simultaneous measurement of metabolic flux in portally-drained viscera, liver, spleen, kidney and hindquarter in the conscious pig. Lab Anim 30, 347358.
33. Nason, GJ, Barry, BD, Obinwa, O, et al. (2014) Early rise in C-reactive protein is a marker for infective complications in laparoscopic colorectal surgery. Surg Laparosc Endosc Percutan Tech 24, 5761.
34. Davis, TA, Burrin, DG, Fiorotto, ML, et al. (1996) Protein synthesis in skeletal muscle and jejunum is more responsive to feeding in 7-than in 26-day-old pigs. Am J Physiol 270, E802E809.
35. Davis, TA, Fiorotto, ML, Burrin, DG, et al. (2002) Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. Am J Physiol Endocrinol Metab 282, E880E890.
36. Wu, G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 117.
37. Pond, WG & Mersmann, HJ (2001) Biology of the Domestic Pig. Ithaca, New York: Cornell University Press.
38. Mittendorfer, B, Volpi, E & Wolfe, R (2001) Whole body and skeletal muscle glutamine metabolism in healthy subjects. Am J Physiol Endocrinol Metab 280, E323E333.
39. Wu, G & Thompson, JR (1990) The effect of glutamine on protein turnover in chick skeletal muscle in vitro . Biochem J 265, 593598.
40. Lecker, SH, Jagoe, RT, Gilbert, A, et al. (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18, 3951.
41. Karinch, AM, Pan, M, Lin, C-M, et al. (2001) Glutamine metabolism in sepsis and infection. J Nutr 131, 2535S2538S.
42. Goldberg, AL & Odessey, R (1972) Oxidation of amino acids by diaphragms from fed and fasted rats. Am J Physiol 223, 13841391.
43. Rennie, MJ & Tipton, KD (2000) Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 20, 457483.
44. Wu, G & Thompson, JR (1989) Is methionine transaminated in skeletal muscle? Biochem J 257, 281.
45. Wu, G & Thompson, JR (1989) Methionine transamination and glutamine transaminases in skeletal muscle. Biochem J 262, 690.
46. Lordelo, M, Gaspar, A, Le Bellego, L, et al. (2008) Isoleucine and valine supplementation of a low-protein corn-wheat-soybean meal-based diet for piglets: growth performance and nitrogen balance. J Anim Sci 86, 29362941.
47. Soumeh, E, van Milgen, J, Sloth, N, et al. (2015) The optimum ratio of standardized ileal digestible leucine to lysine for 8 to 12 kg female pigs. J Anim Sci 93, 22182224.
48. Wu, G, Bazer, FW, Dai, Z, et al. (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2, 387417.
49. Murgas Torrazza, R, Suryawan, A, Gazzaneo, MC, et al. (2010) Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. J Nutr 140, 21452152.
50. Suryawan, A, Torrazza, RM, Gazzaneo, MC, et al. (2012) Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways. Pediatr Res 71, 324331.
51. Yin, Y, Yao, K, Liu, Z, et al. (2010) Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39, 14771486.
52. Taylor, P, Rennie, M & Low, S (1999) Biomembrane transport and interorgan nutrient flows: the amino acids. In Biomembrane Transport, pp. 295325 [LJ Van Winkle, editor]. New York: Academic.
53. Bohé, J, Low, A, Wolfe, RR, et al. (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol 552, 315324.
54. O’Connor, PM, Bush, JA, Suryawan, A, et al. (2003) Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 284, E110E119.
55. Zheng, L, Wei, H, He, P, et al. (2016) Effects of supplementation of branched-chain amino acids to reduced-protein diet on skeletal muscle protein synthesis and degradation in the fed and fasted states in a piglet model. Nutrients 9, 17.
56. Volpi, E, Kobayashi, H, Sheffield-Moore, M, et al. (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78, 250258.
57. Newgard, CB, An, J, Bain, JR, et al. (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9, 311326.
58. Wheatley, SM, El-Kadi, SW, Suryawan, A, et al. (2014) Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of β-hydroxy-β-methylbutyrate. Am J Physiol Endocrinol Metab 306, E91E99.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed