Skip to main content
×
Home

Diets and morbid tissues – history counts, present counts

  • Yaakov Henkin (a1), Julia Kovsan (a2), Yftach Gepner (a2) and Iris Shai (a2)
Abstract

Body fat distribution, especially visceral fat accumulation, may contribute more than total fat mass per se to the development of metabolic and cardiovascular disorders. Early prevention highly improves health outcomes later in life, especially when considering such cumulative conditions as atherosclerosis. However, as these processes emerge to be partly reversible, dietary and lifestyle interventions at any age and health condition are greatly beneficial. Given the worldwide abundance of metabolic and cardiovascular disorders, the identification and implementation of strategies for preventing or reducing the accumulation of morbid fat tissues is of great importance for preventing and regressing atherosclerosis. This review focuses on dietary strategies and specific food components that were demonstrated to alter body fat distribution and regression of atherosclerosis. Different properties of various adipose depots (superficial subcutaneous, deep subcutaneous and visceral fat depots) and their contribution to metabolic and cardiovascular disorders are briefly discussed. Visceral obesity and atherosclerosis should be approached as modifiable rather than ineluctable conditions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diets and morbid tissues – history counts, present counts
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Diets and morbid tissues – history counts, present counts
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Diets and morbid tissues – history counts, present counts
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr I. Shai, fax +972 8 647 7637/8, email irish@bgu.ac.il
References
Hide All
1Hamdy O, Porramatikul S & Al-Ozairi E (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2, 367373.
2WHO (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. WHO Technical Report Series, no. 894ixii, 1-253.
3Flegal KM, Carroll MD, Ogden CL, et al. (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235241.
4James PT, Leach R, Kalamara E, et al. (2001) The worldwide obesity epidemic. Obes Res 9, Suppl. 4, 228S233S.
5Must A, Spadano J, Coakley EH, et al. (1999) The disease burden associated with overweight and obesity. JAMA 282, 15231529.
6Stewart ST, Cutler DM & Rosen AB (2009) Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med 361, 22522260.
7Bray GA (2004) Medical consequences of obesity. J Clin Endocrinol Metab 89, 25832589.
8Kopelman P (2007) Health risks associated with overweight and obesity. Obes Rev 8, Suppl. 1, 1317.
9Ali AT & Crowther NJ (2005) Body fat distribution and insulin resistance. S Afr Med J 95, 878880.
10Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93, 11 Suppl. 1, S57S63.
11Avram AS, Avram MM & James WD (2005) Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53, 671683.
12Frontini A & Cinti S (2010) Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab 11, 253256.
13Wells JCK (2006) The evolution of human fatness and susceptibility to obesity: an ethological approach. Biol Rev 81, 183205.
14Pond CM (1998) The Fats of Life. Cambridge: Cambridge University Press.
15Bjorntorp P (1974) Effects of age, sex, and clinical conditions on adipose tissue cellularity in man. Metabolism 23, 10911102.
16Hirsch J & Batchelor B (1976) Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 5, 299311.
17Spalding KL, Arner E, Westermark PO, et al. (2008) Dynamics of fat cell turnover in humans. Nature 453, 783787.
18Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11, 1118.
19Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21, 697738.
20Golan R, Shelef I, Rudich A, et al. (2012) Abdominal superficial subcutaneous fat: a putative distinct protective fat subdepot in type 2 diabetes. Diabetes Care 35, 640647.
21Abate N, Burns D, Peshock RM, et al. (1994) Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res 35, 14901496.
22Abate N, Garg A, Peshock RM, et al. (1995) Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 96, 8898.
23Bouchard C, Despres JP & Mauriege P (1993) Genetic and nongenetic determinants of regional fat distribution. Endocr Rev 14, 7293.
24DeNino WF, Tchernof A, Dionne IJ, et al. (2001) Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women. Diabetes Care 24, 925932.
25Kuk JL, Saunders TJ, Davidson LE, et al. (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8, 339348.
26Dixon AK (1983) Abdominal fat assessed by computed tomography: sex difference in distribution. Clin Radiol 34, 189191.
27Smith SR, Lovejoy JC, Greenway F, et al. (2001) Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50, 425435.
28Heid IM, Jackson AU, Randall JC, et al. (2010) Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42, 949960.
29Perusse L, Despres JP, Lemieux S, et al. (1996) Familial aggregation of abdominal visceral fat level: results from the Quebec family study. Metabolism 45, 378382.
30Cypess AM, Lehman S, Williams G, et al. (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 15091517.
31Nedergaard J, Bengtsson T & Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293, E444E452.
32Seale P & Lazar MA (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58, 14821484.
33van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360, 15001508.
34Votruba SB, Mattison RS, Dumesic DA, et al. (2007) Meal fatty acid uptake in visceral fat in women. Diabetes 56, 25892597.
35Nielsen S, Guo Z, Johnson CM, et al. (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113, 15821588.
36Klein S (2004) The case of visceral fat: argument for the defense. J Clin Invest 113, 15301532.
37Xu H, Barnes GT, Yang Q, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 18211830.
38Harman-Boehm I, Bluher M, Redel H, et al. (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92, 22402247.
39Bluher M, Bashan N, Shai I, et al. (2009) Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body insulin sensitivity. J Clin Endocrinol Metab 94, 25072515.
40Vague J (1999) The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. 1956. Nutrition 15, 8990; discussion 91.
41Ruderman N, Chisholm D, Pi-Sunyer X, et al. (1998) The metabolically obese, normal-weight individual revisited. Diabetes 47, 699713.
42Jensen MD, Haymond MW, Rizza RA, et al. (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83, 11681173.
43Brochu M, Starling RD, Tchernof A, et al. (2000) Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab 85, 23782384.
44Goodpaster BH, Kelley DE, Wing RR, et al. (1999) Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 48, 839847.
45Lemieux S, Prud'homme D, Nadeau A, et al. (1996) Seven-year changes in body fat and visceral adipose tissue in women. Association with indexes of plasma glucose–insulin homeostasis. Diabetes Care 19, 983991.
46Ross R, Aru J, Freeman J, et al. (2002) Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 282, E657E663.
47Goodpaster BH, Thaete FL, Simoneau JA, et al. (1997) Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 46, 15791585.
48Maffeis C, Manfredi R, Trombetta M, et al. (2008) Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 93, 21222128.
49Wagenknecht LE, Langefeld CD, Scherzinger AL, et al. (2003) Insulin sensitivity, insulin secretion, and abdominal fat: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes 52, 24902496.
50Frayn KN (2000) Visceral fat and insulin resistance – causative or correlative? Br J Nutr 83, Suppl. 1, S71S77.
51Kelley DE, Thaete FL, Troost F, et al. (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278, E941E948.
52Misra A, Garg A, Abate N, et al. (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 5, 9399.
53Monzon JR, Basile R, Heneghan S, et al. (2002) Lipolysis in adipocytes isolated from deep and superficial subcutaneous adipose tissue. Obes Res 10, 266269.
54Cannon B & Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277359.
55Bartelt A, Bruns OT, Reimer R, et al. (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17, 200205.
56Nedergaard J, Bengtsson T & Cannon B (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13, 238240.
57Smith SR & Zachwieja JJ (1999) Visceral adipose tissue: a critical review of intervention strategies. Int J Obes Relat Metab Disord 23, 329335.
58Chaston TB & Dixon JB (2008) Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond) 32, 619628.
59Hall KD & Hallgreen CE (2008) Increasing weight loss attenuates the preferential loss of visceral compared with subcutaneous fat: a predicted result of an allometric model. Int J Obes (Lond) 32, 722.
60Iacobellis G, Singh N, Wharton S, et al. (2008) Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 16, 16931697.
61Miyashita Y, Koide N, Ohtsuka M, et al. (2004) Beneficial effect of low carbohydrate in low calorie diets on visceral fat reduction in type 2 diabetic patients with obesity. Diabetes Res Clin Pract 65, 235241.
62Paniagua JA, de la Sacristana A Gallego, Romero I, et al. (2007) Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care 30, 17171723.
63Walker KZ, O'Dea K, Johnson L, et al. (1996) Body fat distribution and non-insulin-dependent diabetes: comparison of a fiber-rich, high-carbohydrate, low-fat (23 %) diet and a 35 % fat diet high in monounsaturated fat. Am J Clin Nutr 63, 254260.
64Hays NP, Starling RD, Liu X, et al. (2004) Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: a randomized controlled trial. Arch Intern Med 164, 210217.
65Josse AR, Atkinson SA, Tarnopolsky MA, et al. (2011) Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr 141, 16261634.
66Clifton PM, Noakes M & Keogh JB (2004) Very low-fat (12 %) and high monounsaturated fat (35 %) diets do not differentially affect abdominal fat loss in overweight, nondiabetic women. J Nutr 134, 17411745.
67McKeown NM, Troy LM, Jacques PF, et al. (2010) Whole- and refined-grain intakes are differentially associated with abdominal visceral and subcutaneous adiposity in healthy adults: the Framingham Heart Study. Am J Clin Nutr 92, 11651171.
68McKeown NM, Yoshida M, Shea MK, et al. (2009) Whole-grain intake and cereal fiber are associated with lower abdominal adiposity in older adults. J Nutr 139, 19501955.
69Maki KC, Reeves MS, Farmer M, et al. (2009) Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr 139, 264270.
70Crescenzo R, Bianco F, Coppola P, et al. (2014) Adipose tissue remodeling in rats exhibiting fructose-induced obesity. Eur J Nutr 53, 413419.
71Ronn M, Lind PM, Karlsson H, et al. (2013) Quantification of total and visceral adipose tissue in fructose-fed rats using water-fat separated single echo MRI. Obesity (Silver Spring) 21, E388E395.
72Cao L, Liu X, Cao H, et al. (2012) Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance. Oxid Med Cell Longev. 2012, 374346.
73Stanhope KL, Schwarz JM, Keim NL, et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119, 13221334.
74Kavanagh K, Jones KL, Sawyer J, et al. (2007) Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring) 15, 16751684.
75Kim JY, Nolte LA, Hansen PA, et al. (2000) High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass. Am J Physiol Regul Integr Comp Physiol 279, R2057R2065.
76Rokling-Andersen MH, Rustan AC, Wensaas AJ, et al. (2009) Marine n-3 fatty acids promote size reduction of visceral adipose depots, without altering body weight and composition, in male Wistar rats fed a high-fat diet. Br J Nutr 102, 9951006.
77Oi-Kano Y, Kawada T, Watanabe T, et al. (2007) Extra virgin olive oil increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J Nutr Biochem 18, 685692.
78Ross R (1990 s) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801809.
79Libby P (2000) Changing concepts of atherogenesis. J Intern Med 247, 349358.
80Tirosh A, Shai I, Afek A, et al. (2011) Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med 364, 13151325.
81Tirosh A, Rudich A, Shochat T, et al. (2007) Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med 147, 377385.
82Shai I, Schwarzfuchs D, Henkin Y, et al. (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359, 229241.
83Schwarzfuchs D, Golan R & Shai I (2012) Four-year follow-up after two-year dietary interventions. N Engl J Med 367, 13731374.
84Estruch R, Ros E, Salas-Salvadó J, et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean Diet. N Engl J Med 368, 12791290.
85Gattone M & Giannuzzi P (2006) Interventional strategies in early atherosclerosis. Monaldi Arch Chest Dis 66, 5462.
86Hjerkinn EM, Abdelnoor M, Breivik L, et al. (2006) Effect of diet or very long chain omega-3 fatty acids on progression of atherosclerosis, evaluated by carotid plaques, intima–media thickness and by pulse wave propagation in elderly men with hypercholesterolaemia. Eur J Cardiovasc Prev Rehabil 13, 325333.
87Markus RA, Mack WJ, Azen SP, et al. (1997) Influence of lifestyle modification on atherosclerotic progression determined by ultrasonographic change in the common carotid intima–media thickness. Am J Clin Nutr 65, 10001004.
88Wildman RP, Schott LL, Brockwell S, et al. (2004) A dietary and exercise intervention slows menopause-associated progression of subclinical atherosclerosis as measured by intima–media thickness of the carotid arteries. J Am Coll Cardiol 44, 579585.
89Blüher M, Rudich A, Klöting N, et al. (2012) Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 35, 342349.
90Koopmans SJ, Dekker R, Ackermans MT, et al. (2011) Dietary saturated fat/cholesterol, but not unsaturated fat or starch, induces C-reactive protein associated early atherosclerosis and ectopic fat deposition in diabetic pigs. Cardiovasc Diabetol 10, 64.
91Rizkalla SW, Prifti E, Cotillard A, et al. (2012) Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am J Clin Nutr 95, 4963.
92Pedersen LR, Olsen RH, Jurs A, et al. (2014) A randomised trial comparing weight loss with aerobic exercise in overweight individuals with coronary artery disease: The CUT-IT trial. Eur J Prev Cardiol (Epublication ahead of print version 31 July 2014).
93Garcia-Fernandez E, Rico-Cabanas L, Rosgaard N, et al. (2014) Mediterranean diet and cardiodiabesity: a review. Nutrients 6, 34743500.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 19
Total number of PDF views: 105 *
Loading metrics...

Abstract views

Total abstract views: 230 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.