Skip to main content
    • Aa
    • Aa

Diets and morbid tissues – history counts, present counts

  • Yaakov Henkin (a1), Julia Kovsan (a2), Yftach Gepner (a2) and Iris Shai (a2)

Body fat distribution, especially visceral fat accumulation, may contribute more than total fat mass per se to the development of metabolic and cardiovascular disorders. Early prevention highly improves health outcomes later in life, especially when considering such cumulative conditions as atherosclerosis. However, as these processes emerge to be partly reversible, dietary and lifestyle interventions at any age and health condition are greatly beneficial. Given the worldwide abundance of metabolic and cardiovascular disorders, the identification and implementation of strategies for preventing or reducing the accumulation of morbid fat tissues is of great importance for preventing and regressing atherosclerosis. This review focuses on dietary strategies and specific food components that were demonstrated to alter body fat distribution and regression of atherosclerosis. Different properties of various adipose depots (superficial subcutaneous, deep subcutaneous and visceral fat depots) and their contribution to metabolic and cardiovascular disorders are briefly discussed. Visceral obesity and atherosclerosis should be approached as modifiable rather than ineluctable conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diets and morbid tissues – history counts, present counts
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Diets and morbid tissues – history counts, present counts
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Diets and morbid tissues – history counts, present counts
      Available formats
Corresponding author
*Corresponding author: Dr I. Shai, fax +972 8 647 7637/8, email
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

3 KM Flegal , MD Carroll , CL Ogden , et al. (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235241.

5 A Must , J Spadano , EH Coakley , et al. (1999) The disease burden associated with overweight and obesity. JAMA 282, 15231529.

6 ST Stewart , DM Cutler & AB Rosen (2009) Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med 361, 22522260.

7 GA Bray (2004) Medical consequences of obesity. J Clin Endocrinol Metab 89, 25832589.

8 P Kopelman (2007) Health risks associated with overweight and obesity. Obes Rev 8, Suppl. 1, 1317.

10 MD Jensen (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93, 11 Suppl. 1, S57S63.

13 JCK Wells (2006) The evolution of human fatness and susceptibility to obesity: an ethological approach. Biol Rev 81, 183205.

14 CM Pond (1998) The Fats of Life. Cambridge: Cambridge University Press.

15 P Bjorntorp (1974) Effects of age, sex, and clinical conditions on adipose tissue cellularity in man. Metabolism 23, 10911102.

16 J Hirsch & B Batchelor (1976) Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 5, 299311.

17 KL Spalding , E Arner , PO Westermark , et al. (2008) Dynamics of fat cell turnover in humans. Nature 453, 783787.

18 MM Ibrahim (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11, 1118.

20 R Golan , I Shelef , A Rudich , et al. (2012) Abdominal superficial subcutaneous fat: a putative distinct protective fat subdepot in type 2 diabetes. Diabetes Care 35, 640647.

23 C Bouchard , JP Despres & P Mauriege (1993) Genetic and nongenetic determinants of regional fat distribution. Endocr Rev 14, 7293.

24 WF DeNino , A Tchernof , IJ Dionne , et al. (2001) Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women. Diabetes Care 24, 925932.

25 JL Kuk , TJ Saunders , LE Davidson , et al. (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8, 339348.

27 SR Smith , JC Lovejoy , F Greenway , et al. (2001) Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50, 425435.

28 IM Heid , AU Jackson , JC Randall , et al. (2010) Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42, 949960.

29 L Perusse , JP Despres , S Lemieux , et al. (1996) Familial aggregation of abdominal visceral fat level: results from the Quebec family study. Metabolism 45, 378382.

30 AM Cypess , S Lehman , G Williams , et al. (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 15091517.

31 J Nedergaard , T Bengtsson & B Cannon (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293, E444E452.

32 P Seale & MA Lazar (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58, 14821484.

33 WD van Marken Lichtenbelt , JW Vanhommerig , NM Smulders , et al. (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360, 15001508.

35 S Nielsen , Z Guo , CM Johnson , et al. (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113, 15821588.

36 S Klein (2004) The case of visceral fat: argument for the defense. J Clin Invest 113, 15301532.

38 I Harman-Boehm , M Bluher , H Redel , et al. (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92, 22402247.

41 N Ruderman , D Chisholm , X Pi-Sunyer , et al. (1998) The metabolically obese, normal-weight individual revisited. Diabetes 47, 699713.

42 MD Jensen , MW Haymond , RA Rizza , et al. (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83, 11681173.

43 M Brochu , RD Starling , A Tchernof , et al. (2000) Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab 85, 23782384.

44 BH Goodpaster , DE Kelley , RR Wing , et al. (1999) Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 48, 839847.

46 R Ross , J Aru , J Freeman , et al. (2002) Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 282, E657E663.

47 BH Goodpaster , FL Thaete , JA Simoneau , et al. (1997) Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 46, 15791585.

48 C Maffeis , R Manfredi , M Trombetta , et al. (2008) Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 93, 21222128.

50 KN Frayn (2000) Visceral fat and insulin resistance – causative or correlative? Br J Nutr 83, Suppl. 1, S71S77.

52 A Misra , A Garg , N Abate , et al. (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 5, 9399.

53 JR Monzon , R Basile , S Heneghan , et al. (2002) Lipolysis in adipocytes isolated from deep and superficial subcutaneous adipose tissue. Obes Res 10, 266269.

54 B Cannon & J Nedergaard (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277359.

56 J Nedergaard , T Bengtsson & B Cannon (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13, 238240.

57 SR Smith & JJ Zachwieja (1999) Visceral adipose tissue: a critical review of intervention strategies. Int J Obes Relat Metab Disord 23, 329335.

59 KD Hall & CE Hallgreen (2008) Increasing weight loss attenuates the preferential loss of visceral compared with subcutaneous fat: a predicted result of an allometric model. Int J Obes (Lond) 32, 722.

60 G Iacobellis , N Singh , S Wharton , et al. (2008) Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 16, 16931697.

62 JA Paniagua , A Gallego de la Sacristana , I Romero , et al. (2007) Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care 30, 17171723.

65 AR Josse , SA Atkinson , MA Tarnopolsky , et al. (2011) Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr 141, 16261634.

69 KC Maki , MS Reeves , M Farmer , et al. (2009) Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr 139, 264270.

72 L Cao , X Liu , H Cao , et al. (2012) Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance. Oxid Med Cell Longev. 2012, 374346.

73 KL Stanhope , JM Schwarz , NL Keim , et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119, 13221334.

74 K Kavanagh , KL Jones , J Sawyer , et al. (2007) Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring) 15, 16751684.

77 Y Oi-Kano , T Kawada , T Watanabe , et al. (2007) Extra virgin olive oil increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J Nutr Biochem 18, 685692.

80 A Tirosh , I Shai , A Afek , et al. (2011) Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med 364, 13151325.

81 A Tirosh , A Rudich , T Shochat , et al. (2007) Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med 147, 377385.

82 I Shai , D Schwarzfuchs , Y Henkin , et al. (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359, 229241.

83 D Schwarzfuchs , R Golan & I Shai (2012) Four-year follow-up after two-year dietary interventions. N Engl J Med 367, 13731374.

84 R Estruch , E Ros , J Salas-Salvadó , et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean Diet. N Engl J Med 368, 12791290.

88 RP Wildman , LL Schott , S Brockwell , et al. (2004) A dietary and exercise intervention slows menopause-associated progression of subclinical atherosclerosis as measured by intima–media thickness of the carotid arteries. J Am Coll Cardiol 44, 579585.

90 SJ Koopmans , R Dekker , MT Ackermans , et al. (2011) Dietary saturated fat/cholesterol, but not unsaturated fat or starch, induces C-reactive protein associated early atherosclerosis and ectopic fat deposition in diabetic pigs. Cardiovasc Diabetol 10, 64.

91 SW Rizkalla , E Prifti , A Cotillard , et al. (2012) Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am J Clin Nutr 95, 4963.

93 E Garcia-Fernandez , L Rico-Cabanas , N Rosgaard , et al. (2014) Mediterranean diet and cardiodiabesity: a review. Nutrients 6, 34743500.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 19
Total number of PDF views: 90 *
Loading metrics...

Abstract views

Total abstract views: 207 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.