Skip to main content
×
Home
    • Aa
    • Aa

Impact of polyunsaturated fatty acids on human colonic bacterial metabolism: an in vitro and in vivo study*

  • Lorna Thompson (a1) and Robin C. Spiller (a1)
Abstract

Dietary polyunsaturated fatty acids (PUFA) reduce colonic proliferation and exert a mild laxative effect. We have studied the effect of the highly unsaturatede icosapentaenoic acid ethyl ester (EPA-EE) on the growth and metabolism of colonic bacteria in vitro, and in vivo. For the in vitro study, growth was assessed by viable counts. Bacteroides thetaiotaomicron was significantly inhibited in anaerobic media containing EPA-EE at concentrations > 7 g/I. Escherichia coli was apparently resistant even at 100 g/I. For the in vivo study, ten healthy volunteers ingested 18 g EPA-EE/d for 7 d. Stool frequency, 24 h stool weight and whole-gut transit time were assessed together with breath H2 and 14CO2 excretion following oral ingestion of 15 g lactitol labelled with 0·18 MBq [14C]lactitol. The area under the breath-H2-time curve was significantly reduced by EPA-EE, from a control value of 690·3 (SE 94·2) ppm.h to 449·5 (SE 91·7) ppm.h. Percentage dose of 14CO2 excreted, total stool weight and whole-gut transit time were unaltered, being respectively 24 (SE 2)%, 281 (SE 66) g and 45 (SE 4) h with EPA-EE v. control values of 27 (SE 1)%, 300 (SE 89) g and 42 (SE 5) h. It is concluded that dietary supplementation with EPA-EE reduces breath H2 excretion without apparently impairing overall colonic carbohydrate fermentation. The observed reduction may reflect utilization of H2 to hydrogenate the five double bonds of EPA-EE.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of polyunsaturated fatty acids on human colonic bacterial metabolism: an in vitro and in vivo study*
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Impact of polyunsaturated fatty acids on human colonic bacterial metabolism: an in vitro and in vivo study*
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Impact of polyunsaturated fatty acids on human colonic bacterial metabolism: an in vitro and in vivo study*
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: