Skip to main content Accessibility help
×
Home

Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention

  • H. Nyambe-Silavwe (a1) and G. Williamson (a1)

Abstract

Polyphenol- and fibre-rich foods (PFRF) have the potential to affect postprandial glycaemic responses by reducing glucose absorption, and thus decreasing the glycaemic response of foods when consumed together. A randomised, single-blind, cross-over study was conducted on sixteen healthy volunteers to test whether PFRF could attenuate postprandial blood glucose in healthy volunteers when added to a source of carbohydrate (starch in bread). This is the first study to examine the effects of a meal comprised of components to inhibit each stage of the biochemical pathway, leading up to the appearance of glucose in the blood. The volunteers were fasted and attended four visits: two control visits (bread, water, balancing sugars) and two test visits (single and double dose of PFRF) where they consumed bread, water and PFRF. Blood samples were collected at 0 (fasted), 15, 30, 45, 60, 90, 120, 150 and 180 min after consumption. The PFRF components were tested for α-amylase and α-glucosidase inhibitory potential in vitro. Plasma glucose was lower after consumption of both doses compared with controls: lower dose, change in mean incremental areas under the glucose curves (IAUC)=−27·4 (sd 7·5) %, P<0·001; higher dose, IAUC=−49·0 (sd 15·3) %, P<0·001; insulin IAUC was also attenuated by−46·9 (sd 13·4) %, P<0·01. Consistent with this, the polyphenol components of the PFRF inhibited α-amylase (green tea, strawberry, blackberry and blackcurrant) and α-glucosidase (green tea) activities in vitro. The PFRF have a pronounced and significant lowering effect on postprandial blood glucose and insulin response in humans, due in part to inhibition of α-amylase and α-glucosidase, as well as glucose transport.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: G. Williamson, email g.williamson@leeds.ac.uk

References

Hide All
1. Hodge, AM, English, DR, O’Dea, K, et al. (2004) Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27, 27012706.
2. McKeown, NM, Meigs, JB, Liu, S, et al. (2004) Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27, 538546.
3. Salmeron, J, Manson, JE, Stampfer, MJ, et al. (1997) Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 277, 472477.
4. Steven, J, Ahn, K, Juhaer, I, et al. (2002) Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults. Diabetes Care 25, 17151721.
5. Järvi, AE, Karlström, BE, Granfeldt, YE, et al. (1999) Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22, 1018.
6. Brand-Miller, J, Hayne, S, Petocz, P, et al. (2003) Low-glycemic index diets in the management of diabetes a meta-analysis of randomized controlled trials. Diabetes Care 26, 22612267.
7. Livesey, G, Taylor, R, Hulshof, T, et al. (2008) Glycemic response and health – a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 87, 258S268S.
8. Ajala, O, English, P & Pinkney, J (2013) Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 97, 505516.
9. Augustin, L, Franceschi, S, Jenkins, D, et al. (2002) Glycemic index in chronic disease: a review. Eur J Clin Nutr 56, 10491071.
10. Thompson, LU & Yoon, JH (1984) Starch digestibility as affected by polyphenols and phytic acid. J Food Sci 49, 12281229.
11. Scazzina, F, Siebenhandl-Ehn, S & Pellegrini, N (2013) The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr 109, 11631174.
12. Dikeman, CL & Fahey, GC Jr (2006) Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr 46, 649663.
13. Hanhineva, K, Torronen, R, Bondia-Pons, I, et al. (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11, 13651402.
14. Williamson, G (2013) Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res 57, 4857.
15. Hanefeld, M, Schaper, F & Koehler, C (2008) Effect of acarbose on vascular disease in patients with abnormal glucose tolerance. Cardiovas Drugs Ther 22, 225231.
16. Chiasson, J-L (2006) Acarbose for the prevention of diabetes, hypertension, and cardiovascular disease in subjects with impaired glucose tolerance: the Study to Prevent Non-Insulin-Dependent Diabetes Mellitus (STOP-NIDDM) Trial. Endocr Pract 12, 2530.
17. Englyst, HN, Kingman, SM & Cummings, JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46, S33S50.
18. Brouns, F, Bjorck, I, Frayn, KN, et al. (2005) Glycaemic index methodology. Nutr Res Rev 18, 145171.
19. Honda, M & Hara, Y (1993) Inhibition of rat small intestinal sucrase and α-glucosidase activities by tea polyphenols. Biosci Biotechnol Biochem 57, 123124.
20. Kamiyama, O, Sanae, F, Ikeda, K, et al. (2010) In vitro inhibition of alpha-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem 122, 10611066.
21. Matsui, T, Tanaka, T, Tamura, S, et al. (2007) alpha-Glucosidase inhibitory profile of catechins and theaflavins. J Agric Food Chem 55, 99105.
22. Forester, SC, Gu, Y & Lambert, JD (2012) Inhibition of starch digestion by the green tea polyphenol, (-)-epigallocatechin-3-gallate. Mol Nutr Food Res 56, 16471654.
23. McDougall, GJ, Shpiro, F, Dobson, P, et al. (2005) Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase. J Agric Food Chem 53, 27602766.
24. McDougall, GJ & Stewart, D (2005) The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23, 189195.
25. Hossain, SJ, Kato, H, Aoshima, H, et al. (2002) Polyphenol-induced inhibition of the response of Na+/glucose cotransporter expressed in Xenopus oocytes. J Agric Food Chem 50, 52155219.
26. Kobayashi, Y, Suzuki, M, Satsu, H, et al. (2000) Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48, 56185623.
27. Manzano, S & Williamson, G (2010) Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 54, 17731780.
28. Nyambe-Silavwe, H, Villa-Rodriguez, JA, Ifie, I, et al. (2015) Inhibition of human α-amylase by dietary polyphenols. J Funct Foods 19, 723732.
29. Adisakwattana, S, Charoenlertkul, P & Yibchok-anun, S (2009) alpha-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J Enzyme Inhib Med Chem 24, 6569.
30. Singleton, VL, Orthofer, R & Lamuela-Raventos, RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology, vol. 299, pp. 152178 [L Packer, editor]. San Diego, CA: Elsevier Academic Press Inc.
31. AOAC International (2005) Official Methods of Analysis of AOAC International. Gaithersburg, MD: Association of Official Analytical Chemists.
32. Neveu, V, Perez-Jimenez, J, Vos, F, et al. (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010, bap024.
33. Anderson, JW, Baird, P, Davis, RH, et al. (2009) Health benefits of dietary fiber. Nutr Rev 67, 188205.
34. Weickert, MO & Pfeiffer, AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138, 439442.
35. Willett, W, Manson, J & Liu, S (2002) Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr 76, 274S280S.
36. Bryans, JA, Judd, PA & Ellis, PR (2007) The effect of consuming instant black tea on postprandial plasma glucose and insulin concentrations in healthy humans. J Am Coll Nutr 26, 471477.
37. Chai, Y, Wang, M & Zhang, G (2013) Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. J Agric Food Chem 61, 86088615.
38. Clegg, ME, Pratt, M, Meade, CM, et al. (2011) The addition of raspberries and blueberries to a starch-based food does not alter the glycaemic response. Br J Nutr 106, 335338.
39. Coe, SA, Clegg, M, Armengol, M, et al. (2013) The polyphenol-rich baobab fruit (Adansonia digitata L.) reduces starch digestion and glycemic response in humans. Nutr Res 33, 888896.
40. Hlebowicz, J, Darwiche, G, Bjorgell, O, et al. (2007) Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr 85, 15521556.
41. Johnston, KL, Clifford, MN & Morgan, LM (2002) Possible role for apple juice phenolic, compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J Sci Food Agric 82, 18001805.
42. Johnston, KL, Clifford, MN & Morgan, LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78, 728733.
43. Josic, J, Olsson, AT, Wickenberg, J, et al. (2010) Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: a randomized controlled trial. Nutr J 9, 63.
44. Linderborg, KM, Jarvinen, R, Lehtonen, HM, et al. (2012) The fiber and/or polyphenols present in lingonberries null the glycemic effect of the sugars present in the berries when consumed together with added glucose in healthy human volunteers. Nutr Res 32, 471478.
45. Makarova, E, Gornas, P, Konrade, I, et al. (2015) Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: a preliminary study. J Sci Food Agric 95, 560568.
46. Schulze, C, Bangert, A, Kottra, G, et al. (2014) Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans. Mol Nutr Food Res 58, 17951808.
47. Torronen, R, Sarkkinen, E, Niskanen, T, et al. (2012) Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br J Nutr 107, 14451451.
48. Tsujita, T & Takaku, T (2008) Mechanism of the inhibitory action of chestnut astringent skin extract on carbohydrate absorption. J Nutr Sci Vitaminol 54, 416421.
49. Tsujita, T, Takaku, T & Suzuki, T (2008) Chestnut astringent skin extract, an alpha-amylase inhibitor, retards carbohydrate absorption in rats and humans. J Nutr Sci Vitaminol 54, 8288.

Keywords

Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention

  • H. Nyambe-Silavwe (a1) and G. Williamson (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed