Hostname: page-component-5d59c44645-ndqjc Total loading time: 0 Render date: 2024-02-23T04:01:14.154Z Has data issue: false hasContentIssue false

Effect of meal frequency and timing on physical performance

Published online by Cambridge University Press:  09 March 2007

John A. Hawley
Affiliation:
MRC/UCT Bioenergetics of Exercise Research Unit, Department of Physiology, University of Cape Town Medical School, South Africa
Louise M. Burke
Affiliation:
Department of Sports Nutrition, Australian Institute of Sport, Belconnen ACT 2616, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two areas of sports nutrition in which the periodicity of eating has been studied relate to: (1) the habitually high energy intakes of many athletes, and (2) the optimization of carbohydrate(CHO) availability to enhance performance. The present paper examines how the timing and frequency of food and fluid intake can assist the athlete and physically-active person to improve their exercise performance in these areas. Frequent eating occasions provide a practical strategy allowing athletes to increase energy intake while concomitantly reducing the gastric discomfort of infrequent large meals. The optimization of CHO stores is a special challenge for athletes undertaking prolonged training or competition sessions. This is a cyclical process with post-exercise CHO ingestion promoting muscle and liver glycogen re-synthesis; pre-exercise feedings being practised to optimize substrate availability and feedings during exercise providing a readily-available source of exogenous fuel as endogenous stores become depleted. The timing and frequency of CHO intake at these various stages are crucial determinants for optimizing fuel availability to enhance exercise capacity.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

American Dietetic Association (1993). Position stand of the American Dietetic Association and the Canadian Dietetic Association: nutrition for physical fitness and athletic performance for adults. Journal of American Dietetic Association 93, 691696.Google Scholar
Anantaraman, R., Carmines, A. A., Gaesser, G. A. & Weltman, A. (1995). Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. International Journal of Sports Medicine 16, 461465.Google Scholar
Barry, A., Cantwell, T., Doherty, F., Folan, J. C., Ingoldsby, M., Kevany, J. P., O'Broin, J. D., O'Connor, H., O'Shea, B., Ryan, B. A. & Fimls, J. V. (1981). A nutritional study of Irish athletes. British Journal of Sports Medicine 15, 99109.Google Scholar
Below, P. R., Mora-Rodriguez, R., Gonzalez-Alonso, J. & Coyle, E. F. (1995). Fluid and carbohydrate ingestion independently improve- performance during 1 h of intense cycling. Medicine and Scienck in Sports and Exercise 27, 200210.Google Scholar
Bjorkman, O., Sahlin, K., Hagenfeldt, L. & Wahren, J. (1984). Influence of glucose and fructose ingestion on the capacity for long-term exercise in well-trained men. Clinical Physiology 4, 4883–4494.Google Scholar
Bosch, A. N., Dennis, S. C. & Noakes, T. D. (1993). Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. Journal of Applied Physiology 74, 19211927.Google Scholar
Brooke, J. D., Davies, G. J. & Green, L. F. (1975). The effects of normal and glucose syrup work diets on the performance of racing cyclists. Journal of Sports Medicine 15, 257265.Google Scholar
Brotherhood, J. R. (1984). Nutrition and sports Performance. Sports Medicine 1, 350389.Google Scholar
Burke, L. M., Collier, G. R., Davis, P. G., Fricker, P. A., Sanigorski, A. J. & Hargreaves, M. (1996). Muscle glycogen storage after prolonged exercise: effect of the frequency of carbohydrate feedings. American Journal of Clinical Nutrition 64, 115119.Google Scholar
Burke, L. M., Collier, G. R. & Hargreaves, M. (1993). Muscle glycogen storage after prolonged exercise: effect of glycemic index of carbohydrate feedings. Journal of Applied Physiology 75, 10191023.Google Scholar
Burke, L. M., Gollan, R. A. & Read, R. S. D. (1991). Dietary intakes and food use of groups of elite Australian male athletes. International Journal of Sports Nutrition 1, 378394.Google Scholar
Burke, L. M. & Hawley, J. A. (1997 a). Nutritional strategies for athletic performance. In Medical Problems in Athletes, [Fields, K. B. and Fricker, P. A. editors]. New York: Blackwell Science (In the Press).Google Scholar
Burke, L. M. & Hawley, J. A. (1997 b). Fluid balance in team sports: guidelines for optimal practices. Sports Medicine (In the Press).Google Scholar
Butterworth, D. E., Nieman, D. C., Butler, J. V. & Herring, J. L. (1994). Food intake patterns of marathon runners. International Journal of Sports Nutrition 4, 17.Google Scholar
Chryssanthopoulos, C., Hennessy, L. C. M. & Williams, C. (1994). The influence of pre-exercise glucose ingestion on endurance running capacity. British Journal of Sports Medicine 28, 105109.Google Scholar
Coggan, A. R. & Coyle, E. R. (1987). Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology 63, 23882395.Google Scholar
Coggan, A. R. & Coyle, E. F. (1988). Effect of carbohydrate feedings during high-intensity exercise. Journal of Applied Physiology 65, 17031709.Google Scholar
Coggan, A. R. & Coyle, E. F. (1989). Metabolism and performance following carbohydrate ingestion late in exercise. Medicine and Science in Sports and Exercise 21, 5965.Google Scholar
Costill, D. L., Sherman, W. M., Fink, W. J., Maresh, C., Witten, M. & Miller, J. M. (1981). The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. American Journal of Clinical Nutrition 34, 18311836.Google Scholar
Coyle, E. F. (1992). Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. In Food, Nutrition and Sports Performance, pp. 3562 [illiams, J. T. and Devlin, J. T. editors]. London: E & F Spon.Google Scholar
Coyle, E. F., Coggan, A. R., Hemmert, M. K. & Ivy, J. L. (1986). Muscle glycogen utilisation during prolonged strenuous exercise when fed carbohydrate. Journal of Applied Physiology 61, 165172.Google Scholar
Coyle, E. F., Coggan, A. R., Hemmert, M. K., Lowe, R. C. & Walters, T. J. (1985). Substrate usage during prolonged exercise following a pre-exercise meal. Journal of Applied Physiology 59, 429433.Google Scholar
Danforth, E. (1985). Diet and obesity. American Journal of Clinical Nutrition 41, 11321145.Google Scholar
Devlin, J. T., Calles-Escandon, J. & Horton, E. S. (1986). Effects of preexercise snack feeding on endurance cycle exercise. Journal of Applied Physiology 60, 980985.Google Scholar
De Wijn, J. F. & Van Erp-Baart, M. (1980). Food pattern, body composition and physical condition of heavy weight competition-rowers. Voeding 41, 1318.Google Scholar
Erickson, M. A., Schwarzkopf, R. J. & McKenzie, R. D. (1987). Effects of caffeine, fructose, and glucose ingestion on muscle glycogen utilisation during exercise. Medicine and Science in Sports and Exercise 19, 579583.Google Scholar
Febbraio, M. A. & Stewart, K. L. (1996). Carbohydrate feedings before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. Journal of Applied Physiology 81, 11151120.Google Scholar
Felig, P., Cherif, A., Minigawa, A. & Wahren, J. (1982). Hypoglycaemia during prolonged exercise in normal men. New England Joumul of Medicine 306, 895900.Google Scholar
Fielding, R. A., Costill, D. L., Fink, W. J., King, D. S., Hargreaves, M. & Kovaleski, J. E. (1985). Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Medicine and Science in Sports and Exercise 17, 472476.Google Scholar
Flynn, M. G., Costill, D. L., Hawley, J. A., Fink, W. J., Neufer, P. D., Fielding, R. A. & Sleeper, M. D. (1987).Influence of selected carbohydrate drinks on cycling performance and glycogen use. Medicine and Science in Sports and Exercise 19, 3740.Google Scholar
Fogelholm, M., Rehunen, S., Gref, C.-G., Laakso, J. T., Lehto, J., Ruokonen, I. & Himberg, J.-J. (1992). Dietary intake and thiamin, iron, and zinc status in elite Nordic skiers during different training periods. International Joumul of Sports Nutrition 2, 351365.Google Scholar
Foster, C., Costill, D. L. & Fink, W. J. (1979). Effects of preexercise feedings on endurance performance. Medicine and Science in Sports 11, 15.Google Scholar
Fruth, J. M. & Gisolfi, C. V. (1983). Effects of carbohydrate consumption on endurance performance: fructose versus glucose. In Nutrient Utilization During Exercise, pp. 6875 [Fox, E. L. editor]. Columbus, OH: Ross Laboratories.Google Scholar
Gleeson, M., Maughan, R. J. & Greenhaff, P. L. (1986). Comparison of the effects of pre-exercise feeding of glucose, glycerol and placebo on endurance performance and fuel homeostasis in man. European Journal of Applied Physiology 55, 645653.Google Scholar
Goodpaster, B. H., Costill, D. L., Fink, W. J., Trape, T. A., Joszi, A. C., Starling, R. D. & Trappe, S. W. (1996). The effects of pre-exercise starch ingestion on endurance performance. International Journal of Sports Medicine 17, 366372.Google Scholar
Guezennec, C. Y. (1995). Oxidation rates, complex carbohydrates and exercise. Sports Medicine 19, 365372.Google Scholar
Hargreaves, M. & Briggs, C. A. (1988). Effect of carbohydrate ingestion on exercise metabolism. Journal of Applied Physiology 65, 15531555.Google Scholar
Hargreaves, M., Costill, D. L., Coggan, A., Fink, W. J. & Nishibata, I. (1984). Effect of carbohydrate feedings on muscle glycogen utilisation and exercise performance. Medicine and Science in Sports and Exercise, 16, 219222.Google Scholar
Hargreaves, M., Costill, D. L., Fink, W. J., King, D. S. & Fielding, R. A. (1987). Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Medicine and Science in Sports and Exercise 19, 3336.Google Scholar
Hawley, J. A., Bosch, A. N., Weltan, S. M., Dennis, S. C. & Noakes, T. D. (1994). Glucose kinetics during prolonged exercise in euglycaemic and hyperglycamic subjects. Pfiugers Archiv 426, 378386.Google Scholar
Hawley, J. A., Dennis, S. C. & Noakes, T. D. (1992a). Oxidation of carbohydrate ingested during prolonged endurance exercise. Sports Medicine 14, 2742.Google Scholar
Hawley, J. A., Dennis, S. C. & Noakes, T. D. (1995). Carbohydrate, fluid and electrolyte requirements during prolonged exercise. In Sports Nutrition. Minerals and Electrolytes, pp. 235265 [Kies, C. V. and Driskell, J. K. editors]. Boca Raton: CRC Press.Google Scholar
Hawley, J. A., Dennis, S. C., Nowitz, A., Brouns, F. & Noakes, T. D. (1992 b). Exogenous carbohydrate oxidation from maltose and glucose ingested during prolonged exercise. European Journal of Applied Physiology 64, 523527.Google Scholar
Hawley, J. A. & Hopkins, W. G. (1995). Aerobic glycolytic and aerobic lipolytic power systems. A new paradigm with implications for endurance and ultra-endurance events. Sports Medicine 19, 240250.Google Scholar
Hawley, J. A. & Williams, M. M. (1991). Dietary intakes of age-group swimmers. British Journal of Sports Medicine 25, 154158.Google Scholar
Inge, K. & Brukner, K. (1986). Food For Sport. A Nutrition Guide for Australian Sportsmen, Sportswomen, Coaches and Parents, pp. 9596. Melbourne, Australia: William Heinemann.Google Scholar
Ivy, J. L., Katz, A. L., Cutler, C. L., Sherman, W. M. & Coyle, E. F. (1988). Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. Journal of Applied Physiology 65, 14801485.Google Scholar
Jenkins, D. J. A., Wolever, T. M. S., Jenkins, A. L., Josse, R. G. & Wong, G. S. (1984). The glycaemic response to carbohydrate foods. Lancet ii, 388391.Google Scholar
Jeukendrup, A. E., Brouns, F., Wagenmakers, A. J. M. & Saris, W. H. M. (1997) Carbohydrate-electrolyte feedings improve 1 h time-trial cycling performance. International Journal of Sports Medicine (In the Press).Google Scholar
Keizer, H., Kuipers, H., van Kranenburg, G. & Geurten, P. (1986). Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. International Journal of Sports Medicine 8, 99104.Google Scholar
Khoo, C.-S., Rawson, N. E., Robinson, M. L. & Stevenson, R. J. (1987). Nutrient intake and eating habits of triathletes. Annals of Sports Medicine 3, 144150.Google Scholar
Kiens, B., Raben, A. B., Valeur, A. K. & Richter, E. A. (1990). Benefit of dietary simple carbohydrates on the early postexercise muscle glycogen repletion in male athletes. Medicine and Science in Sports and Exercise 22, Suppl., S88.Google Scholar
Kirsch, K. A. & Von Ameln, H. (1981). Feeding patterns of endurance athletes. European Journal of Applied Physiology 47, 97208.Google Scholar
Lindeman, A. K. (1990). Eating and training habits of triathletes: a balancing act. Journal of American Dietetic Association 90, 993995.Google Scholar
Macaraeg, P. V. J. (1983). Influence of carbohydrate electrolyte ingestion on running endurance. In Nutrient Utilization During Exercise, pp, 9196 [Fox, E. L., editor]. Columbus, OH: Ross Laboratories.Google Scholar
McConell, G., Kloot, K. & Hargreaves, M. (1996). Effect of timing of carbohydrate ingestion on endurance exercise performance. Medicine and Science in Sports and Exercise 28, 13001304.Google Scholar
McMurray, R. G., Wilson, J. R. & Kitchell, B. S. (1983). The effects of fructose and glucose on high intensity endurance performance. Research Quarterly for Exercise and Sport 54, 156162.Google Scholar
Mitchell, J. B. & Voss, K. W. (1991). The influence of volume on gastric emptying and fluid balance during prolonged exercise. Medicine and Science in Sports and Exercise 23, 314319.Google Scholar
Neufer, P. D., Costill, D. L., Flynn, M. G., Kinvan, J. P., Mitchell, J. B. & Howard, J. (1987). Improvements in exercise performance: effects of carbohydrate feedings and diet. Journal of Applied Physiology 62, 983988.Google Scholar
Noakes, T. D., Lambert, E. V., Lambert, M. I., McArthur, P. S., Myburgh, K. H. & Benade, A. J. S. (1988).Carbohydrate ingestion and muscle glycogen depletion during marathon and ultramarathon racing. European Journal of Applied Physiology 57, 482489.Google Scholar
Noakes, T. D., Rehrer, N. J. & Maughan, R. J. (1991). The importance of volume in regulating gastric emptying. Medicine and Science in Sports and Exercise 23, 307313.Google Scholar
Okano, G., Takeda, H., Morita, I., Katoh, M., Mu, Z. & Miyake, S. (1988). Effect of pre-exercise fructose ingestion on endurance performance in fed men. Medicine and Science in Sports and Exercise 20, 105109.Google Scholar
Piehl, K. (1974). Time course for refilling of glycogen stores in human muscle fibers following exercise-induced glycogen depletion. Acta Physiologica Scandinavica 90, 297302.Google Scholar
Piehl, K., Adolfsson, S. & Nazar, K. (1974). Glycogen storage and glycogen synthase activity in trained and untrained muscle of man. Acta Physiologica Scandinavica 90, 779788.Google Scholar
Reed, M. J., Brozinicle, J. T., Lee, M. C. & Ivy, J. L. (1989). Muscle glycogen storage post exercise: effect of mode of carbohydrate administration. Journal of Applied Physiology 66, 720726.Google Scholar
Riley, M. L., Israel, R. G., Holbert, D., Tapscott, E. B. & Dohm, G. L. (1988). Effect of carbohydrate ingestion on exercise endurance and metabolism after a 1-day fast. international Journal of Sports Medicine 9, 320324.Google Scholar
Robinson, T. A., Hawley, J. A., Palmer, G. S., Wilson, G. R., Gray, D. A., Noakes, T. D. & Dennis, S. C. (1995).Water ingestion does not improve 1-h cycling performance in moderate ambient temperatures. European Journal of Applied Physiology 71, 153160.Google Scholar
Saltin, B. & Karlsson, J. (1971). Muscle glycogen utilization during work of different intensities. In Muscle Metabolism During Exercise, pp. 289300 [Pernow, B. and Saltin, B., editors]. New York: Plenum Press.Google Scholar
Saris, W. H. M., Goodpaster, B. H., Jeukendrup, A. E., Brouns, F., Halliday, D. & Wagenmakers, A. J. M.(1993). Exogenous carbohydrate oxidation from different carbohydrate sources during exercise. Journal of Applied Physiology 75, 21682172.Google Scholar
Saris, W. H. M., Van Erp-Baart, M. A., Brouns, F., Westerterp, K. R. & Ten Hoor, F. (1989). Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. International Journal of Sports Medicine 10, S26S31.Google Scholar
Sasaki, H., Maeda, J., Usui, S. & Ishiko, T. (1987). Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. International Journal of Sports Medicine 8, 261265.Google Scholar
Sherman, W. M., Brodowicz, G., Wright, D. A., Allen, W. K., Simonsen, J. & Dernbach, A. (1989). Effects of 4 h preexercise carbohydrate feedings on cycling performance. Medicine and Science in Sports and Exercise 21, 598604.Google Scholar
Sherman, W. M., Costill, D. L., Fink, W. J. & Miller, J. M. (1981). Effect of diet-exercisemanipulation on muscle glycogen and its subsequent utilisation during performance. International Journal of Sports Medicine 2, 114118.Google Scholar
Sherman, W. M., Peden, M. C. & Wright, D. A. (1991). Carbohydrate feedings 1 h before exercise improves cycling performance. American Journal of Clinical Nutrition 54, 866870.Google Scholar
Short, S. H. & Short, W. R. (1983). Four-year study of university athletes' dietary intake. Journal of American Dietetic Association 82, 632645.Google Scholar
Thomas, D. E., Brotherhood, J. R. & Brand, J. C. (1991). Carbohydrate feeding before exercise: effect of glycemic index. International Journal of Sports Medicine 12, 180186.Google Scholar
Van Erp-Baart, A. M. J., Saris, W. H. M., Binkhorst, R. A., Vos, J. A. & Elvers, J. W. H. (1989). Nationwide survey on nutritional habits in elite athletes. Part I. Energy, carbohydrate, protein, and fat intake. International Journal of Sports Medicine 10, S3S10.Google Scholar
Wagenmakers, A. J. M., Brouns, F., Saris, W. H. M. & Halliday, D. (1993). Oxidation rates of orally ingested carbohydrates during prolonged exercise in man. Journal of Applied Physiology 75, 27742780.Google Scholar
Williams, C., Nute, M. G., Broadbank, L. & Vinall, S. (1990). Influence of fluid intake on endurance running performance: a comparison between water, glucose and fructose solutions. European Journal of Applied Physiology 60, 112119.Google Scholar
Wilmore, J. & Costill, D. L. (1994). Physiology of Sport and Exercise. Champaign, IL: Human Kinetics.Google Scholar
Wright, D. A., Sherman, W. M. & Dernbach, A. R. (1991). Carbohydrate feedings before, during, or in combination improve cycling endurance performance. Journal of Applied Physiology 71, 10821088.Google Scholar