Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.524 Render date: 2022-09-28T22:51:33.124Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population

Published online by Cambridge University Press:  09 March 2007

J. P. Marais
Affiliation:
Cedara Agricultural Research Institute, Pietermaritzburg, South Africa
Joha J. Therion
Affiliation:
Animal and Dairy Science Research Institute, Irene, South Africa
R. I. Mackie
Affiliation:
Animal and Dairy Science Research Institute, Irene, South Africa
A. Kistner
Affiliation:
Laboratory of Molecular and Cell Biology, CSIR, Pretoria, South Africa
C. Dennison
Affiliation:
Department of Biochemistry, University of Natal, Pietermaritzburg, South Africa
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The nature of the digestion-inhibiting substance in Kikuyu grass (Pennisetum clandestinum, Hochst), containing high levels of nitrate, was investigated using in vitro digestibility techniques.

2. Nitrite, which accumulated during the reduction of nitrate to ammonia, seemed to be the primary factor reducing digestibility. Nitrate and ammonia did not affect digestion in vitro.

3. Nitrite caused a reduction in the cellulolytic, xylanolytic and total microbial population, with a concomitant reduction in cellulase and xylanase activity of the digesta.

4. The mode of action of nitrite on rumen microbial growth was investigated.

5. The possibility that the growth of cellulolytic rumen microbes was depressed by a reduction in concentration of essential branched-chain volatile fatty acids by nitrite was discounted.

6. Although nitrite caused a marked increase in the redox potential, due to its oxidizing properties, the more-positive redox potential did not reduce the digestibility of the grass.

7. The growth of three of the four major cellulolytic bacteria commonly found in the rumen was severely depressed by nitrite, while some rumen bacteria were relatively insensitive to nitrite.

8. Growth inhibition seemed to depend primarily on the extent to which these microbes derive their energy from electron-transport-mediated processes.

9. It was suggested that, due to the sensitivity of some rumen bacteria to nitrite, digestibility and therefore animal performance could be affected long before clinical symptoms of nitrite toxicity become apparent.

Type
General Nutrition Papers
Copyright
Copyright © The Nutrition Society 1988

References

Allison, M. J., Bryant, M. P. & Doetsch, R. N. (1958). Science 128, 474475.CrossRefGoogle Scholar
Allison, M. J. & Reddy, C. A. (1984). In Current Perspectives in Microbial Ecology, pp. 248256 [Kelly, M. J. and Reddy, C. A., editors]. Washington, DC: American Society for Microbiology.Google Scholar
Asbury, A. C. & Rhode, E. A. (1964). American Journal of Veterinary Research 25, 10101013.Google Scholar
Azoulay, E., Puig, J. & Martins Rosado De Sousa, M. L. (1969). Annales de l'Institut Pasteur, Paris 117, 474485.Google Scholar
Bryant, A. M. (1965). New Zealand Journal of Agricultural Research 8, 118125.CrossRefGoogle Scholar
Caldwell, D. R. & Bryant, M. P. (1966). Applied Microbiology 14, 794801.Google Scholar
Castellani, A. G. & Niven, C. F. (1955). Applied Microbiology 3, 154159.Google Scholar
Cataldo, D. A., Haroon, M., Schrader, L. E. & Young, V. L. (1975). Communications in Soil Science and Plant Analysis 6, 7180.CrossRefGoogle Scholar
Committee on Nitrite and Alternative Curing Agents in Food (1981). The Health Effects of Nitrate, Nitrite and N-Nitroso Compounds. Washington, DC: National Academy Press.Google Scholar
Dawson, K. A., Preziosi, M. C. & Caldwell, D. R. (1979). Journal of Bacteriology 139, 384392.Google Scholar
Eagon, R. G., Hodge, T. W., Rake, J. B. & Yarbrough, J. M. (1979). Canadian Journal of Microbiology 25, 798802.CrossRefGoogle Scholar
Francis, G. L., Gawthorne, J. M. & Storer, G. B. (1978). Applied and Environmental Microbiology 36, 643649.Google Scholar
Gawthorne, J. M. (1979). Annales De Recherches Veterinaires 10, 249250.Google Scholar
Hall, O. G., Gaddy, C. D. & Hobbs, C. S. (1960). Journal of Animal Science 19, 1305.Google Scholar
Hanke, M. E. & Katz, Y. J. (1943). Archives of Biochemistry and Biophysics 2, 183200.Google Scholar
Hansen, J. N. & Levin, R. A. (1975). Applied Microbiology 30, 862869.Google Scholar
Holtenius, P. (1957). Acta Agriculturae Scandinavica 7, 113163.CrossRefGoogle Scholar
Hopgood, M. F. & Walker, D. J. (1967). Australian Journal of Biological Science 20, 183192.Google Scholar
Hopgood, M. F. & Walker, D. J. (1969). Australian Journal of Biological Science 22, 14131424.CrossRefGoogle Scholar
Jamieson, N. D. (1959). New Zealand Journal of Agricultural Research 2, 314328.CrossRefGoogle Scholar
Jones, G. A. (1972). Canadian Journal of Microbiology 18, 17831787.CrossRefGoogle Scholar
Kemp, A., Geurink, J. H., Haalstra, R. T. & Malestein, A. (1976). Stikstof 19, 4048.Google Scholar
Kemp, A., Geurink, J. H., Haalstra, R. T. & Malestein, A. (1977). Netherlands Journal of Agricultural Science 25, 5162.Google Scholar
Kistner, A. (1960). Journal of General Microbiology 23, 565576.CrossRefGoogle Scholar
Kjaergaard, L. (1977). In Advances in Biochemical Engineering, vol. 7, pp. 131150 [Ghose, T. K., Fiechter, A. and Blakebrough, N., editors]. Berlin: Springer Verlag.Google Scholar
Koch, A. L. (1981). In Manual of Methods for General Bacteriology, pp. 179207 [Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. and Phillips, G. B., editors]. Washington, DC: American Society for Microbiology.Google Scholar
Krishnamurti, C. R. & Kitts, W. D. (1969). Canadian Journal of Microbiology 15, 13731379.CrossRefGoogle Scholar
Kromann, R. P., Weikel, J. M. & Falen, L. F. (1976). College of Agricultural Research Centre Bulletin no. 821. Washington DC: Washington State University.Google Scholar
Lewis, D. (1951). Biochemistry Journal 49, 149153.CrossRefGoogle Scholar
Marais, J. P. (1966). South African Journal of Agricultural Science 9, 267268.Google Scholar
Marais, J. P. (1980). Agroanimalia 12, 711.Google Scholar
Marais, J. P., De Wit, J. L. & Quicke, G. V. (1966). Analytical Biochemistry 15, 373381.CrossRefGoogle Scholar
Minson, D. J. & McLeod, M. N. (1972). Division of Tropical Pastures Technical Paper no. 8. Melbourne, Australia: Commonwealth Scientific and Industrial Organisation.Google Scholar
Miura, H., Horiguchi, M., Ogimoto, K. & Matsumoto, T. (1983). Applied and Environmental Microbiology 45, 726729.Google Scholar
Miyazaki, A., Okamoto, K., Tsuda, E., Kawashima, R. & Uesaka, S. (1974). Japanese Journal of Zootechnical Science 45, 183188.Google Scholar
Morris, J. G. (1975). Advances in Microbial Physiology 12, 169246.CrossRefGoogle Scholar
Morris, S. L. & Hansen, J. N. (1981). Journal of Bacteriology 148, 465471.Google Scholar
Nicholas, D. J. D. & Nason, A. (1957). In Methods in Enzymology, vol. 3, pp. 981984 [Colowick, S. P. and Kaplan, N. D., editors]. New York: Academic Press.Google Scholar
O'Leary, V. & Solberg, M. (1976). Applied and Environmental Microbiology 31, 208212.Google Scholar
Perigo, J. A. & Roberts, T. A. (1968). Journal of Food Technology 2, 9194.Google Scholar
Prins, R. A., Cline-Theil, W., Malestein, A. & Counotte, G. H. M. (1980). Applied and Environmental Microbiology 40, 163165.Google Scholar
Raun, N. S. & Burroughs, W. (1962). Journal of Animal Science 21, 454457.CrossRefGoogle Scholar
Rowe, J. J., Yarbrough, J. M., Rake, J. B. & Eagon, R. G. (1979). Current Microbiology 2, 5154.CrossRefGoogle Scholar
Smith, P. H. & Hungate, R. E. (1958). Journal of Bacteriology 75, 713718.Google Scholar
Taiz, L. & Honigman, W. A. (1976). Plant Physiology 58, 380386.CrossRefGoogle Scholar
Taniguchi, S. & Itagaki, E. (1960). Biochimica et Biophysica Acta 44, 263279.CrossRefGoogle Scholar
Thauer, R. K., Jungermann, K. & Decker, K. (1977). Bacteriological Review 41, 100180.Google Scholar
Thauer, R. K. & Kröger, A. (1984). In Herbivore Nutrition in the Subtropics and Tropics, pp. 399407. [Gilchrist, E. M. C. and Mackie, R. I., editors]. South Africa: Science Press.Google Scholar
Tilley, J. M. A. & Terry, R. A. (1963). Journal of the British Grassland Society 18, 104111.CrossRefGoogle Scholar
Turner, C. A. & Kienholz, E. W. (1972). Feedstuffs 44, 2830.Google Scholar
Van Broekhoven, L. W. & Davies, J. A. R. (1980). Netherlands Journal of Agricultural Science 28, 238241.Google Scholar
Van Broekhoven, L. W. & Davies, J. A. R. (1981). Netherlands Journal of Agricultural Science 29, 173177.Google Scholar
Vertregt, N. (1977). Netherlands Journal of Agricultural Science 25, 243254.Google Scholar
Weatherburn, M. W. (1967). Analytical Chemistry 39, 971974.CrossRefGoogle Scholar
Yarbrough, J. M., Rake, J. B. & Eagon, R. G. (1980). Applied and Environmental Microbiology 39, 831834.Google Scholar
You have Access
57
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *