Skip to main content Accessibility help
×
Home

Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs

  • E. Ostrowska (a1), R. F. Cross (a2), M. Muralitharan (a3), D. E. Bauman (a4) and F. R. Dunshea (a1)...

Abstract

Sixteen female cross-bred (Large White × Landrace) pigs (initial weight 65 kg) with venous catheters were randomly allocated to four treatment groups in a 2×2 factorial design. The respective factors were dietary fat (25 or 100 g/kg) and dietary conjugated linoleic acid (CLA; 0 or 10 g CLA-55/kg). Pigs were fed every 3 h (close to ad libitum digestible energy intake) for 8 d and were bled frequently. Plasma glucose and non-esterified fatty acid (NEFA) responses to insulin and adrenaline challenges were determined on day 8. Plasma concentrations of NEFA were significantly increased (10·5 and 5·4 % for low- and high-fat diets respectively, P=0·015) throughout the experiment, suggesting that there was a possible increase in fat mobilisation. The increase in lipolysis, an indicator of ß-adrenergic stimulated lipolysis, was also evident in the NEFA response to adrenaline. However, the increase in plasma triacylglycerol (11·0 and 7·1 % for low- and high-fat diets respectively, P=0·008) indicated that CLA could have reduced fat accretion via decreased adipose tissue triacylglycerol synthesis from preformed fatty acids, possibly through reduced lipoprotein lipase activity. Plasma glucose, the primary substrate for de novo lipid synthesis, and plasma insulin levels were unaffected by dietary CLA suggesting that de novo lipid synthesis was largely unaffected (P=0·24 and P=0·30 respectively). In addition, the dietary CLA had no effect upon the ability of insulin to stimulate glucose removal.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Associate Professor Frank R. Dunshea, fax +61 3 9 742 0400, email Frank.Dunshea@nre.vic.gov.au

References

Hide All
Albright, K, Liu, KL, Storkson, JM, Hentges, E, Lofgren, P, Simeca, J, Cook, ME & Pariza, M (1996) Body composition repartitioning following the removal of dietary conjugated linoleic acid. Journal of Animal Science 74, 152.
Baumgard, LH, Corl, BA, Dwyer, DA & Bauman, DE (2002) Effects of conjugated linoleic acid (CLA) on tissue response to homeostatic signals and plasma variables associated with lipid metabolism in lactating dairy cows. Journal of Animal Science 80, 12851293.
Baumgard, LH, Matitashvili, E, Corl, BA, Dwyer, DA & Bauman, DE (2001a). trans-10, cis-12 CLA decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. Journal of Dairy Science (In the Press).
Baumgard, LH, Sangster, JK & Bauman, DE (2001b) Milk fat synthesis is progressively reduced by increasing supplemental amounts of. trans-10, cis-12 conjugated linoleic acid (CLA).Journal of Nutrition 131, 17641769.
Bee, G (2000) Dietary conjugated linoleic acid consumption during pregnancy and lactation influences growth and tissue composition in weaned pigs. Journal of Nutrition 130, 29812989.
Boisclair, YR, Bauman, DE, Bell, AW, Dunshea, FR & Harkins, M (1994) Nutrient utilization and protein turnover in the hindlimb of cattle treated with bovine somatotropin. Journal of Nutrition 124, 664673.
Chouinard, PY, Corneau, L, Barbano, DM, Metzger, LE & Bauman, DE (1999) Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. Journal of Nutrition 129, 15791584.
DeLany, JP, Blohm, F, Truett, AA, Scimeca, JA & West, DB (1999) Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. American Journal of Physiology 276, R1172R1179.
DeLany, JP & West, DB (2000) Changes in body composition with conjugated linoleic acid. Journal of American College of Nutrition 19, 487S493S.
Dunshea, FR, Bauman, DE, Boyd, RD & Bell, AW (1992a) Temporal response of circulating metabolites and hormones during somatotropin treatment of growing pigs. Journal of Animal Science 70, 123131.
Dunshea, FR, Boisclair, YR, Bauman, DE & Bell, AW (1995) Effects of bovine somatotropin and insulin on whole-body and hindlimb glucose metabolism in growing steers. Journal of Animal Science 73, 22632271.
Dunshea, FR, Harris, DM, Bauman, DE, Boyd, RD & Bell, AW (1992b) Effect of porcine somatotropin on in vivo glucose kinetics and lipogenesis in growing pigs. Journal of Animal Science 70, 141151.
Dunshea, FR, Harris, DM, Bauman, DE, Boyd, RD & Bell, AW (1992c) Effect of somatotropin on nonesterified fatty acid and glycerol metabolism in growing pigs. Journal of Animal Science 70, 132140.
Dunshea, FR & King, RH (1994) Temporal response of plasma metabolites to ractopamine treatment in the growing pig. Australian Journal of Agricultural Research 45, 16831692.
Dunshea, FR & King, RH (1995) Responses to homeostatic signals in ractopamine-treated pigs. British Journal of Nutrition 73, 809818.
Harder, T, Rake, A, Rohde, W, Doerner, G & Plagemann, A (1999) Overweight and increased diabetes susceptibility in neonatally insulin-treated adult rats. Endocrine Regulations 33, 2531.
Houseknecht, KL, Vanden Heuvel, JP, Moya-Camarena, SY, Portocarrero, CP, Peck, LW, Nickel, KP & Belury, MA (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochemical and Biophysical Research Communications 244, 678682.
Johnson, MM & Peters, JP (1993) Technical note: an improved method to quantify nonesterified fatty acids in bovine plasma. Journal of Animal Science 71, 753756.
Legro, RA, Finegood, D & Dunaif, A (1998) A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. Journal of Clinical Endocrynology and Metabolism 83, 26942698.
O'Quinn, PR, Sith, JW, Nelssen, JL, Tokach, MD, Goodband, RD & Owen, KQ (1998) A comparison of modified tall oil and conjugated linoleic acid on growing–finishing pig growth performance and carcass characteristics. Journal of Animal Science 76, Suppl. 2, 61.
Ostrowska, E, Muralitharan, M, Cross, RF, Bauman, DE & Dunshea, FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. Journal of Nutrition 129, 20372042.
Park, Y, Albright, KJ, Liu, W, Storkson, JM, Cook, ME & Pariza, MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32, 853858.
Park, Y, Albright, KJ, Storkson, JM, Liu, W, Cook, ME & Pariza, MW (1999a) Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids 34, 243248.
Park, Y, Storkson, JM, Albright, KJ, Liu, W & Pariza, MW (1999b) Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34, 235241.
Payne, RW, Lane, PW and Genstat 5 Committee (1993). Genstat 5 Reference Manual. Oxford: Oxford Science Publications.
Pethick, DW & Dunshea, FR (1993) Fat metabolism and turnover. In Aspects of Ruminant Digestion and Metabolism, pp. 291311. [Forbes, JM and France, J, editors]. Wallingford, Oxon: CAB International.
Ryder, JW, Portocarrero, CP, Song, XM, Cui, L, Yu, M, Combatsiaris, T, Galuska, D, Bauman, DE, Barbano, DM, Charron, MJ, Zierath, JR & Houseknecht, KL (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50, 11491157.
Satory, DL & Smith, SB (1999) Conjugated linoleic acid inhibits proliferation but stimulates lipid filling of murine 3T3-L1 preadipocytes. Journal of Nutrition 129, 9297.
Sechen, SJ, Dunshea, FR & Bauman, DE (1990) Somatotropin in lactating cows: effect on response to adrenaline and insulin. American Journal of Physiology 258, E582E588.
Stangl, GI, Muller, H & Kirchgessner, M (1999) Conjugated linoleic acid effects on circulating hormones, metabolites and lipoproteins, and its proportion in fasting serum and erythrocyte membranes of swine. European Journal of Nutrition 38, 271277.
Tsuboyama-Kasaoka, N, Takahashi, M, Tanemura, K, Kim, HJ, Tange, T, Okuyama, H, Kasai, M, Ikemoto, S & Ezaki, O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 15341542.
West, DB, DeLany, JP, Camet, PM, Blohm, F, Truett, AA & Scimeca, J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. American Journal of Physiology 275, R667R672.

Keywords

Related content

Powered by UNSILO

Effects of dietary fat and conjugated linoleic acid on plasma metabolite concentrations and metabolic responses to homeostatic signals in pigs

  • E. Ostrowska (a1), R. F. Cross (a2), M. Muralitharan (a3), D. E. Bauman (a4) and F. R. Dunshea (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.