Skip to main content Accesibility Help
×
×
Home

Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial

  • Eunyoung Park (a1), Indika Edirisinghe (a1), Ying Yng Choy (a2), Andrew Waterhouse (a2) and Britt Burton-Freeman (a1)...
Abstract

The aim of the present study was to test grape seed extract (GSE) as a functional ingredient to lower blood pressure (BP) in individuals with pre-hypertension. A single-centre, randomised, two-arm, double-blinded, placebo-controlled, 12-week, parallel study was conducted in middle-aged adults with pre-hypertension. A total of thirty-six subjects were randomised (1:1) to Placebo (n 18) or GSE (n 18) groups; twenty-nine of them completed all the protocol-specified procedures (Placebo, n 17; GSE, n 12). Subjects consumed a juice (167 kJ (40 kcal)) containing 0 mg (Placebo) or 300 mg/d GSE (150 mg) twice daily for 6 weeks preceded by a 2-week Placebo run-in and followed by 4-week no-beverage follow-up. Compliance was monitored. BP was measured at screening, 0, 6 and 10 weeks of intervention and blood samples were collected at 0, 3, 6 and 10 weeks of intervention. GSE significantly reduced systolic BP (SBP) by 5·6 % (P=0·012) and diastolic BP (DBP) by 4·7 % (P=0·049) after 6 weeks of intervention period, which was significantly different (SBP; P=0·03) or tended to be different (DBP; P=0·08) from Placebo. BP returned to baseline after the 4-week discontinuation period of GSE beverage. Subjects with higher initial BP experienced greater BP reduction; nearly double the effect size. Fasting insulin and insulin sensitivity tended to improve after 6 weeks of GSE beverage supplementation (P=0·09 and 0·07, respectively); no significant changes were observed with fasting plasma lipids, glucose, oxidised LDL, flow-mediated dilation or vascular adhesion molecules. Total plasma phenolic acid concentrations were 1·6 times higher after 6 weeks of GSE v. Placebo. GSE was found to be safe and to improve BP in people with pre-hypertension, supporting the use of GSE as a functional ingredient in a low-energy beverage for BP control.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: B. Burton-Freeman, fax +1 312 567 5321, email bburton@iit.edu
References
Hide All
1. Roger, VL, Go, AS, Lloyd-Jones, DM, et al. (2012) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125, e2e220.
2. Fields, LE (2004) Mortality from stroke and ischemic heart disease increases exponentially with blood pressure. Hypertension 43, e28 ; author reply e28.
3. Lewington, S, Clarke, R, Qizilbash, N, et al. (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 19031913.
4. Vasan, RS, Beiser, A, Seshadri, S, et al. (2002) Residual lifetime risk for developing hypertension in middle-aged women and men: ihe Framingham Heart Study. JAMA 287, 10031010.
5. Heidenreich, PA, Trogdon, JG, Khavjou, OA, et al. (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933944.
6. Hansson, L, Lindholm, LH, Niskanen, L, et al. (1999) Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353, 611616.
7. Gaciong, Z, Sinski, M & Lewandowski, J (2013) Blood pressure control and primary prevention of stroke: summary of the recent clinical trial data and meta-analyses. Curr Hypertens Rep 15, 559574.
8. Chobanian, AV, Bakris, GL, Black, HR, et al. (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 25602572.
9. Vasan, RS, Larson, MG, Leip, EP, et al. (2001) Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet 358, 16821686.
10. Eckel, RH, Jakicic, JM, Ard, JD, et al. (2014) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63, 29602984.
11. James, PA, Oparil, S, Carter, BL, et al. (2014) 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507520.
12. Chong, MF, Macdonald, R & Lovegrove, JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104, Suppl. 3, S28S39.
13. Shi, J, Yu, J, Pohorly, JE, et al. (2003) Polyphenolics in grape seeds – biochemistry and functionality. J Med Food 6, 291299.
14. Sivaprakasapillai, B, Edirisinghe, I, Randolph, J, et al. (2009) Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism 58, 17431746.
15. Ras, RT, Zock, PL, Zebregs, YE, et al. (2013) Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br J Nutr 110, 22342241.
16. Barona, J, Aristizabal, JC, Blesso, CN, et al. (2012) Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J Nutr 142, 16261632.
17. Robinson, M, Lu, B, Edirisinghe, I, et al. (2012) Effect of grape seed extract on blood pressure in subjects with pre-hypertension. J Pharmacy Nutr Sci 2, 155159.
18. Edirisinghe, I, Burton-Freeman, B & Tissa Kappagoda, C (2008) Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond) 114, 331337.
19. Shen, D, Wu, Q, Wang, M, et al. (2006) Determination of the predominant catechins in Acacia catechu by liquid chromatography/electrospray ionization-mass spectrometry. J Agric Food Chem 54, 32193224.
20. Singleton, V & Rossi, J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16, 144158.
21. Alpert, BS (2010) Validation of the Tiba Medical Ambulo 2400 ambulatory blood pressure monitor to the ISO Standard and BHS protocol. Blood Press Monit 15, 275277.
22. Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
23. Corretti, MC, Anderson, TJ, Benjamin, EJ, et al. (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39, 257265.
24. Belcaro, G, Ledda, A, Hu, S, et al. (2013) Grape seed procyanidins in pre- and mild hypertension: a registry study. Evid Based Complement Alternat Med 2013, 313142.
25. Clifton, PM (2004) Effect of grape seed extract and quercetin on cardiovascular and endothelial parameters in high-risk subjects. J Biomed Biotechnol 2004, 272278.
26. Ward, NC, Hodgson, JM, Croft, KD, et al. (2005) The combination of vitamin C and grape-seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 23, 427434.
27. Sano, A, Uchida, R, Saito, M, et al. (2007) Beneficial effects of grape seed extract on malondialdehyde-modified LDL. J Nutr Sci Vitaminol (Tokyo) 53, 174182.
28. Urpi-Sarda, M, Monagas, M, Khan, N, et al. (2009) Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216, 72587267.
29. Koli, R, Erlund, I, Jula, A, et al. (2010) Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J Agric Food Chem 58, 39273932.
30. Mountzouris, KC, McCartney, AL & Gibson, GR (2002) Intestinal microflora of human infants and current trends for its nutritional modulation. Br J Nutr 87, 405420.
31. Benson, AK, Kelly, SA, Legge, R, et al. (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107, 1893318938.
32. Rechner, AR, Spencer, JP, Kuhnle, G, et al. (2001) Novel biomarkers of the metabolism of caffeic acid derivatives in vivo . Free Radic Biol Med 30, 12131222.
33. Natsume, M, Osakabe, N, Yamagishi, M, et al. (2000) Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem 64, 25812587.
34. Schroeter, H, Heiss, C, Balzer, J, et al. (2006) (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103, 10241029.
35. Baba, S, Osakabe, N, Natsume, M, et al. (2001) Absorption and urinary excretion of (-)-epicatechin after administration of different levels of cocoa powder or (-)-epicatechin in rats. J Agric Food Chem 49, 60506056.
36. Kar, P, Laight, D, Rooprai, HK, et al. (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26, 526531.
37. Engler, MB, Engler, MM, Chen, CY, et al. (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23, 197204.
38. Heiss, C, Kleinbongard, P, Dejam, A, et al. (2005) Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 46, 12761283.
39. Ottaviani, JI, Actis-Goretta, L, Villordo, JJ, et al. (2006) Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition. Biochimie 88, 359365.
40. Alvarez, E, Rodino-Janeiro, BK, Jerez, M, et al. (2012) Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. J Cell Biochem 113, 13861396.
41. Addison, S, Stas, S, Hayden, MR, et al. (2008) Insulin resistance and blood pressure. Curr Hypertens Rep 10, 319325.
42. Hu, FB & Stampfer, MJ (2005) Insulin resistance and hypertension: the chicken-egg question revisited. Circulation 112, 16781680.
43. Kim, JA, Montagnani, M, Koh, KK, et al. (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113, 18881904.
44. Rodriguez-Mateos, A, Rendeiro, C, Bergillos-Meca, T, et al. (2013) Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr 98, 11791191.
45. Sowers, JR (2004) Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 286, H1597H1602.
46. El-Atat, F, Aneja, A, McFarlane, S, et al. (2003) Obesity and hypertension. Endocrinol Metab Clin North Am 32, 823854.
47. Goff, DC Jr, Zaccaro, DJ, Haffner, SM, et al.2003) Insulin sensitivity and the risk of incident hypertension: insights from the Insulin Resistance Atherosclerosis Study. Diabetes Care 26, 805809.
48. Forman, JP, Choi, H & Curhan, GC (2009) Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med 169, 155162.
49. Edirisinghe, I, Randolph, J, Cheema, M, et al. (2012) Effect of grape seed extract on postprandial oxidative status and metabolic responses in men and women with the metabolic syndrome. Funct Food Health Dis 2, 508521.
50. Meeprom, A, Sompong, W, Suwannaphet, W, et al. (2011) Grape seed extract supplementation prevents high-fructose diet-induced insulin resistance in rats by improving insulin and adiponectin signalling pathways. Br J Nutr 106, 11731181.
51. Grassi, D, Desideri, G, Necozione, S, et al. (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 138, 16711676.
52. Kishi, S, Teixido-Tura, G, Ning, H, et al. (2015) Cumulative blood pressure in early adulthood and cardiac dysfunction in middle age: the CARDIA study. J Am Coll Cardiol 65, 26792687.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed