Skip to main content Accessibility help
×
Home

The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables

Published online by Cambridge University Press:  09 March 2007

M. Gillooly
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
T. H. Bothwell
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
J. D. Torrance
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
A. P. MacPhail
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
D. P. Derman
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
W. R. Bezwoda
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
W. Mills
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
R. W. Charlton
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
Fatima Mayet
Affiliation:
Department of Medicine, University of Natal, Durban, South Africa
Rights & Permissions[Opens in a new window]

Abstract

1. Non-haem iron absorption from a variety of vegetable meals was studied in parous Indian Women, using the erythrocyte utilization of radioactive Fe method.

2. The studies were undertaken to establish whether Fe absorption could be correlatedwith the chemical composition of the foodstuff.

3. Addition of the following organic acids commonly found in vegetables, improved the geometric mean Fe absorption from a basic rice meal as follows: from 0·028 to 0·085 with 1 g citric acid, from 0·031 to 0·081 with 15 mg ascorbic acid, from 0·048 to 0·095 with 1 g L-malic acid, from 0·041 to 0·096 with 1 g tartaric acid. The only exception was oxalic acid; the addition of 1 g calciumoxalate to cabbage (Brassica oleraceae) was associated with some depression in Fe absorption from 0·320 to 0·195.

4. There was a marked inhibition of the geometric mean absorption when 500 mg tannic acid was added to a broccoli (Brassica oleraceae) meal (0·015 v. 0·297). Sodium phytate (2 g) caused a similar, though less profound inhibition (0·035 to 0·152).

5. When 3 mg ferrous sulphate was added to different vegetables the geometric mean absorption varied widely. Vegetables of low Fe bioavailability were wheat germ (Triticum aestivum) 0·007, aubergine (Solanum melongena) 0·007, butter beans (Phaseolus lunatus) 0·012, spinach (Spinacea oleraceae) 0·014, brown lentils (Lens culinaris) 0·024, beetroot greens (Beta vulgaris) 0·024 and green lentils (Lens culinaris) 0·032. In contrast, bioavailability was moderate or good with carrot (Daucus carota) 0·098, potato (Solanum tuberosum) 0·115, beetroot (Beta vulgaris) 0·185, pumpkin (Cucurbita mixta) 0·206, broccoli 0·260, tomato (Lycopersicon esculentum) 0·224, cauliflower (Brassica oleraceae) 0·263, cabbage 0·320, turnip (Brassica rapa) 0·327 and sauerkraut 0·327.

6. All the vegetables associated with moderate or good Fe bioavailability contained appreciable amounts of one or more of the organic acids, malic, citric and ascorbic acids.

7. Poor Fe bioavailability was noted in vegetables with high phytate contents (e.g. wheat germ 0·007, butter beans 0·012, brown lentils 0·024 and green lentils 0·032).

8. The fact that a number of vegetables associated with low Fe-absorption turned bluish-black when Fe was added to them, suggested that the total polyphenol content in them was high. The vegetables included aubergine spinach, brown lentils, green lentils and beetroot greens. When the total polyphenol content in all the vegetables tested was formally measured, there was a significant inverse correlation (r 0·859, P < 0·001) between it and Fe absorption. The inverse correlation between the non-hydrolysable polyphenol content and Fe absorption was r 0·901 (P < 0·001).

9. The major relevance of these findings is the fact that the total absorption of non-haem-Fe from a mixed diet may be profoundly influenced by the presence of single vegetables with either marked enhancing or inhibiting effects on Fe bioavailability.

Type
Paper of diract relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Apte, S. V. & Iyengar, L. (1970). Am. J. clin. Nutr. 23, 73.CrossRefGoogle Scholar
Bjorn-Rasmussen, E. & Hallberg, L. (1974). Nutr. Metab. 16, 94.CrossRefGoogle Scholar
Bothwell, T. H., Charlton, R. W., Cook, J. D. & Finch, C. A. (1979). Iron Metabolism in Man. Oxford: Blackwell.Google Scholar
Conradie, J. D. & Mbhele, B. E. L. (1980). S. Afr. med. J. 57, 282.Google Scholar
Cook, J. D., Layrisse, M., Martinez-Torres, C., Walker, R., Monsen, E. & Finch, C. A. (1972). J. clin. Invest. 51, 805.CrossRefGoogle Scholar
Cook, J. D. & Monsen, E. R. (1976). Am. J. clin. Nutr. 29, 859.CrossRefGoogle Scholar
Derman, D. P., Bothwell, T. H., MacPhail, A. P., Torrance, J. D., Bezwoda, W. R., Charlton, R. W. & Mayet, F. G. H. (1980). Scand. J. Haemat. 25, 193.CrossRefGoogle Scholar
Derman, D. P., Bothwell, T. H., Torrance, J. D., Bezwoda, W. R., MacPhail, A. P., Kew, M. C., Sayers, M. H., Disler, P. B. & Charlton, R. W. (1980). Br. J. Nutr. 43, 271.CrossRefGoogle Scholar
Derman, D., Sayers, M., Lynch, S. R., Charlton, R. W. & Bothwell, T. H. (1977). Br. J. Nutr. 38, 261.CrossRefGoogle Scholar
Diem, K. & Lentner, C. (editors) (1970). Document Geigy Scientific Tables, 7th ed. Basel, Switzerland: J. R. Geigy S.A.Google Scholar
Disler, P. B., Lynch, S. R., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1975). Br. J. Nutr. 34, 141.CrossRefGoogle Scholar
Disler, P. B., Lynch, S. R., Charlton, R. W., Torrance, J. D., Bothwell, T. H., Walker, R. B. & Mayet, F. (1975). Gut 16, 193.CrossRefGoogle Scholar
Disler, P. B., Lynch, S. R., Torrance, J. D., Sayers, M. H., Bothwell, T. H. & Charlton, R. W. (1975). S. Afr. J. med. Sci. 40, 109.Google Scholar
Eakins, J. D. & Brown, D. A. (1966). Int. J. appl. Radiat. Isotopes. 17, 391.CrossRefGoogle Scholar
Hallberg, L. (1974). Proc. Nutr. Soc. 33, 285.CrossRefGoogle Scholar
Hallberg, L. (1981). A. Rev. Nutr. 1, 123.CrossRefGoogle Scholar
Hallberg, L. & Bjorn-Rasmussen, E. (1972). Scand. J. Haemat. 9, 193.CrossRefGoogle Scholar
Hallberg, L. & Solvell, L. (1967). Acta Med. Scand. 181, 335.CrossRefGoogle Scholar
International Commission for Radiation Proection (1960). Report of Committee 11 on Permissible Dose of Internal Radiation 1959. ICRP Publication no. 2. Oxford: Pergamon Press.Google Scholar
International Committee for Standardisation in Haematology (1978 a). Br. J. Haemat. 38, 291.CrossRefGoogle Scholar
International Committee for Standardisation in Haematology (1978 b). Br. J. Haemat. 38, 281.CrossRefGoogle Scholar
Layrisse, M., Cook, J. D., Martinez-Torres, C., Roche, M., Kuhn, I. N., Walker, R. B. & Finch, C. A. (1969). Blood 33, 430.Google Scholar
Layrisse, M., Martinez-Torres, C., Cook, J. D., Walker, R. & Finch, C. A. (1973). Blood 41, 333.Google Scholar
MacPhail, A. P., Bothwell, T. H., Torrance, J. D., Derman, D. P., Bezwoda, W. R., Charlton, R. W. & Mayet, F. G. H. (1981). S. Afr. med. J. 59, 939.Google Scholar
Martinez-Torres, C. & Layrisse, M. (1973). In Clinics in Haematology, vol. 2, p. 339. [Callender, S. T., editor]. London, Philadelphia and Toronto: W. B. Saunders.Google Scholar
Mayet, F. G. H., Adams, E. B., Moodley, T., Kleber, E. E. & Cooper, S. K. (1972). S. Afr. med. J. 46, 1427.Google Scholar
Monsen, E. R., Hallberg, L., Layrisse, M., Hegsted, D. M., Cook, J. D., Mentz, W. & Finch, C. A. (1978). Am. J. clin. Nutr. 31, 134.CrossRefGoogle Scholar
Paul, A. A. & Southgate, D. A. T. (1976). The Composition of Foods. Amsterdam: Elsevier North-Holland.Google Scholar
Rossander, L., Hallberg, L. & Bjorn-Rasmussen, E. (1979). Am. J. clin. Nutr. 32, 2484.CrossRefGoogle Scholar
Sayers, M. H., Lynch, S. R., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1974 a). Br. J. Nutr. 31, 367.CrossRefGoogle Scholar
Sayers, M. H., Lynch, S. R., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1974 b). Br. J. Haemat. 28, 483.CrossRefGoogle Scholar
Sayers, M. H., Lynch, S. R., Jacobs, P., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1973). Br. J. Haemat. 24, 209.CrossRefGoogle Scholar
Seikel, M. K. (1964). In Biochemistry of Phenolic Compounds, p. 35 [Harbourne, J. B., editor]. New York: Academic Press.Google Scholar
Singleton, V. L. & Rossi, J. A. (1965). In Methods for Analysis of Wines and Musts, p. 183 [Amerine, M. A. and Ough, C. C., editors]. New York: J. Wiley and Sons.Google Scholar
South African Bureau of Standards(1972). Code of Practice for Medical use of IonizingRadiations, Document 07.Google Scholar
Turnbull, A. L., Cleton, F. & Finch, C. A. (1962). J. clin. Invest. 41, 1898.CrossRefGoogle Scholar
van Soest, P. J. (1978). Am. J. clin. Nutr. 31, S12.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 1457 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-frjnl Total loading time: 0.294 Render date: 2021-01-22T16:12:10.584Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *