Skip to main content
×
×
Home

Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk

  • Elizabeth Sosa-Castillo (a1), Maricela Rodríguez-Cruz (a1) and Carolina Moltó-Puigmartí (a1)
Abstract

Human milk covers the infant’s nutrient requirements during the first 6 months of life. The composition of human milk progressively changes during lactation and it is influenced by maternal nutritional factors. Nowadays, it is well known that nutrients have the ability to interact with genes and modulate molecular mechanisms impacting physiological functions. This has led to a growing interest among researchers in exploring nutrition at a molecular level and to the development of two fields of study: nutrigenomics, which evaluates the influence of nutrients on gene expression, and nutrigenetics, which evaluates the heterogeneous individual response to nutrients due to genetic variation. Fatty acids are one of the nutrients most studied in relation to lactation given their biologically important roles during early postnatal life. Fatty acids modulate transcription factors involved in the regulation of lipid metabolism, which in turn causes a variation in the proportion of lipids in milk. This review focuses on understanding, on the one hand, the gene transcription mechanisms activated by maternal dietary fatty acids and, on the other hand, the interaction between dietary fatty acids and genetic variation in genes involved in lipid metabolism. Both of these mechanisms affect the fatty acid composition of human milk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: M. Rodriguez-Cruz, fax +52 56276944, email maricela.rodriguez.cruz@gmail.com
References
Hide All
1. World Health Organization (2011) Exclusive breastfeeding. http://www.who.int/nutrition/topics/exclusivebreastfeeding/en/ (accessed April 2016).
2. Hill, DR & Newburg, DS (2015) Clinical applications of bioactive milk components. Nutr Rev 73, 463476.
3. Ballard, O & Morrow, AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 60, 4974.
4. Bachour, P, Yafawi, R, Jaber, F, et al. (2012) Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin A concentrations of human milk. Breastfeed Med 7, 179188.
5. Sinanoglou, VJ, Cavouras, D, Boutsikou, T, et al. (2017) Factors affecting human colostrum fatty acid profile: a case study. PLOS ONE 12, e0175817.
6. Shahrin, L, Chisti, MJ & Ahmed, T (2015) Primary and secondary malnutrition. World Rev Nutr Diet 113, 139146.
7. Verduci, E, Banderali, G, Barberi, S, et al. (2014) Epigenetic effects of human breast milk. Nutrients 24, 17111724.
8. Richard, C, Lewis, ED & Field, CJ (2016) Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant´s immune system early in life. Appl Physiol Nutr Metab 41, 461475.
9. Andreas, NJ, Kampmann, B & Mehring Le-Doare, K (2015) Human breast milk: a review on its composition and bioactivity. Early Hum Dev 91, 629635.
10. Mennitti, LV, Oliveira, JL, Morais, CA, et al. (2015) Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem 26, 99111.
11. Fenech, M, El-Sohemy, A, Cahill, L, et al. (2011) Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 4, 6989.
12. Arendt, LM & Kuperwasser, C (2015) Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia 20, 925.
13. Gardner, H, Kent, JC, Lai, CT, et al. (2015) Milk ejection patterns: an intra- individual comparison of breastfeeding and pumping. BMC Pregnancy Childbirth 15, 156.
14. Riordan, J (2010) Anatomy and physiology of lactation. In Breastfeeding and Human Lactation, 4th ed. pp. 7986 [K Wambach and J Riordan, editors]. Boston, MA: Jones & Bartlett Learning.
15. Golinelli, LP, Del Aguila, EM, Flosi Paschoalin, VM, et al. (2014) Functional aspect of colostrum and whey proteins in human milk. J Hum Nutr Food Sci 2, 1035.
16. Innis, SM (2013) Maternal nutrition, genetics, and human milk lipids. Curr Nutr Rep 2, 151158.
17. Koletzko, B, Agostoni, C, Bergmann, R, et al. (2011) Physiological aspects of human milk lipids and implications for infant feeding: a workshop report. Acta Paediatr 100, 14051415.
18. Mohammad, MA & Haymond, MW (2013) Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation. Am J Physiol Endocrinol Metab 305, E700E716.
19. Koletzko, B (2016) Human milk lipids. Ann Nutr Metab 69, 2840.
20. Vallim, T & Salter, AM (2010) Regulation of hepatic gene expression by saturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 82, 211218.
21. Delgado-Noguera, MF, Calvache, JA, Bonfill Cosp, X, et al. (2015) Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. The Cochrane Database of Systematic Reviews, issue 7, Article No. CD007901.
22. De Jong, C, Kikkert, HK, Seggers, J, et al. (2015) Neonatal fatty acid status and neurodevelopmental outcome at 9 years. Early Hum Dev 91, 587591.
23. Ryan, AS, Astwood, JD, Gautier, S, et al. (2010) Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids 82, 305314.
24. Bhatia, HS, Agrawal, R, Sharma, S, et al. (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS ONE 6, e28451.
25. Smithers, LG, Gibson, RA, McPhee, A, et al. (2008) Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: results of a randomized controlled trial. Am J Clin Nutr 88, 10491056.
26. Jacobson, JL, Jacobson, SW, Muckle, G, et al. (2008) Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the Inuit of arctic Quebec. J Pediatr 152, 356364.
27. Nasser, R, Stephen, AM, Goh, YK, et al. (2010) The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int Breastfeed J 5, 3.
28. Schwingshackl, L & Hoffmann, G (2012) Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 4, 19892007.
29. Hu, Y, Tanaka, T, Zhu, J, et al. (2017) Discovery and fine-mapping of loci associated with monounsaturated fatty acids through trans-ethnic meta-analysis in Chinese and European populations. J Lipid Res 58, 974981.
30. Rudolph, MC, Monks, J, Burns, V, et al. (2010) Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab 299, E918E927.
31. Liu, H, Liu, JY, Wu, X, et al. (2010) Biochemistry, molecular biology, and pharmacology of fatty acid synthase an emerging therapeutic target and diagnosis/prognosis marker. Int J Biochem Mol Biol 1, 6989.
32. Green, CD, Ozguden-Akkoc, CG, Wang, Y, et al. (2010) Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res 51, 18711877.
33. Abedi, E & Sahari, MA (2014) Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr 2, 443463.
34. Bazinet, RP & Layé, S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15, 771785.
35. Quinn, EA & Kuzawa, CW (2012) A dose-response relationship between fish consumption and human milk DHA content among Filipino women in Cebu City, Philippines. Acta Paediatr 101, 439445.
36. Stender, S, Astrup, A & Dyerberg, J (2008) Ruminant and industrially produced trans fatty acids: health aspects. Food Nutr Res 52, 10.3402/fnr.v52i0.1651.
37. Friesen, R & Innis, SM (2006) Trans fatty acids in human milk in Canada declined with the introduction of trans fat food labeling. J Nutr 136, 25582561.
38. United Nations International Children’s Emergency Fund (2009) Tracking progress on child and maternal nutrition. https://www.unicef.org/publications/files/Tracking_Progress_on_Child_and_Maternal_Nutrition_EN_110309.pdf (accessed April 2017).
39. Del Prado, M, Villalpando, S, Elizondo, A, et al. (2001) Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 74, 242247.
40. Bautista, CJ, Montaño, S, Ramirez, V, et al. (2016) Changes in milk composition in obese rats consuming a high-fat diet. Br J Nutr 115, 538546.
41. Saben, JL, Bales, ES, Jackman, MR, et al. (2014) Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acids synthesis. PLOS ONE 9, e98066.
42. Panagos, PG, Vishwanathan, R, Penfield-Cyr, A, et al. (2016) Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors. J Perinatol 36, 284290.
43. Ozias, MK, Carlson, SE & Levant, B (2007) Maternal parity and diet (n-3) polyunsaturated fatty acid concentration influence accretion of brain phospholipid docosahexaenoico acid in developing rats. J Nutr 137, 125129.
44. Ibeagha-Awemu, EM, Li, R, Ammah, AA, et al. (2016) Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genomics 17, 104.
45. Capel, F, Rolland-Valognes, G, Dacquet, C, et al. (2013) Analysis of sterol-regulatory element-binding protein 1c target genes in mouse liver during aging and high-fat diet. J Nutrigenet Nutrigenomics 6, 107122.
46. Neschen, S, Morino, K, Dong, J, et al. (2007) n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator–activated receptor-alpha–dependent manner. Diabetes 56, 10341041.
47. Jump, DB, Tripathy, S & Depner, CM (2013) Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr 33, 249269.
48. Rodriguez-Cruz, M, Tovar, AR, Palacios-Gonzalez, B, et al. (2006) Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Delta5 and Delta6 desaturases, SREBP-1, PPAR alpha, and PGC-1. J Lipid Res 47, 553560.
49. Ito, Minoru, Nagasawa, Michiaki, Omae, Naoki, et al. (2013) A novel JNK2/SREBP-1c pathway involved in insulin-induced fatty acid synthesis in human adipocytes. J Lipid Res 54, 15311540.
50. Rodriguez-Cruz, M, Sánchez, R, Bernabe-Garcia, M, et al. (2009) Effect of dietary levels of corn oil on maternal arachidonic acid synthesis and fatty acid composition in lactating rats. Nutrition 25, 209215.
51. Rodriguez-Cruz, M, Sánchez, R, Sánchez, AM, et al. (2011) Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats. Biochim Biophys Acta 1811, 284293.
52. Takeuchi, Y, Yahagi, N, Izumida, Y, et al. (2010) Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit. J Biol Chem 285, 1168111691.
53. Nara, TY, He, WS, Tang, C, et al. (2002) The E-box like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun 296, 111117.
54. Shikama, A, Shinozaki, H, Takeuchi, Y, et al. (2015) Identification of human ELOVL5 enhancer regions controlled by SREBP. Biochem Biophys Res Commun 465, 857863.
55. Kumadaki, S, Matsuzaka, T, Kato, T, et al. (2008) Mouse Elovl-6 promoter is an SREBP target. Biochem Biophys Res Commun 368, 261266.
56. Tu, WC, Cook-Johnson, RJ, James, MJ, et al. (2010) Omega-3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins Leukot Essent Fatty Acids 83, 6168.
57. Rudolph, MC, Neville, MC & Anderson, SM (2007) Lipid synthesis in lactation: diet and the fatty acid switch. J Mammary Gland Biol Neoplasia 12, 269281.
58. Harvatine, KJ, Boisclair, YR & Bauman, DE (2014) Liver x receptors stimulate lipogénesis in bovine mammary cell culture but do not appear to be involved in diet-induced milk fat depression in cows. Physiol Rep 2, e00266.
59. Kadegowda, AK, Connor, EE, Teter, BB, et al. (2010) Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice. J Nutr 140, 919924.
60. Daud, AZ, Mohd-Esa, N, Azlan, A, et al. (2013) The trans fatty acid content in human milk and its association with maternal maternal diet among lactating mothers in Malaysia. Asia Pac J Clin Nutr 22, 431442.
61. Innis, SM (2006) Trans fatty intake during pregnancy, infancy and early childhood. Atheroscler Suppl 7, 1720.
62. Schennink, A, Stoop, WM, Visker, MHPW, et al. (2009) Short communication: Genome-wide scan for bovine milk-fat composition. II. Quantitative trait loci for long-chain fatty acids. J Dairy Sci 92, 46764682.
63. Stoop, WM, Schennink, A, Visker, MH, et al. (2009) Genome-wide scan for bovine milk-fat composition. I. Quantitative trait loci for short- and medium-chain fatty acids. J Dairy Sci 92, 46644675.
64. Mele, M, Conte, G, Castiglioni, B, et al. (2007) Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. J Dairy Sci 90, 44584465.
65. Schennink, A, Heck, JM, Bovenhuis, H, et al. (2008) Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1). J Dairy Sci 91, 21352143.
66. Conte, G, Mele, M, Chessa, S, et al. (2010) Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci 93, 753763.
67. Nafikov, RA, Schoonmaker, JP, Korn, KT, et al. (2013) Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. J Dairy Sci 96, 26052616.
68. Marchitelli, C, Contarini, G, De Matteis, G, et al. (2013) Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. J Dairy Res 80, 165173.
69. Nafikov, RA, Schoonmaker, JP, Korn, KT, et al. (2014) Polymorphisms in lipogenic genes and milk fatty acid composition in Holstein dairy cattle. Genomics 104, 572581.
70. Tăbăran, A, Balteanu, VA, Gal, E, et al. (2015) Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in Romanian Holstein cattle. Anim Biotechnol 26, 105111.
71. Ashes, JR, Gulati, SK & Scott, TW (1997) Potential to alter the content and composition of milk fat through nutrition. J Dairy Sci 80, 22042212.
72. Lock, AL & Bauman, DE (2004) Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39, 11971206.
73. Lanier, JS & Corl, BA (2015) Challenges in enriching milk fat with polyunsaturated fatty acids. J Anim Sci Biotechnol 6, 26.
74. Schaeffer, L, Gohlke, H, Müller, M, et al. (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15, 17451756.
75. Malerba, G, Schaeffer, L, Xumerle, L, et al. (2008) SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 43, 289299.
76. Martinelli, N, Girelli, D, Malerba, G, et al. (2008) FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr 88, 941949.
77. Rzehak, P, Heinrich, J, Klopp, N, et al. (2009) Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr 101, 2026.
78. Baylin, A, Ruiz-Narvaez, E, Kraft, P, et al. (2007) alpha-Linolenic acid, Delta6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr 85, 554560.
79. Tanaka, T, Shen, J, Abecasis, GR, et al. (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5, e1000338.
80. Xie, L & Innis, SM (2008) Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr 138, 22222228.
81. Moltó-Puigmartí, C, Plat, J, Mensink, RP, et al. (2010) FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr 91, 13681376.
82. Morales, E, Bustamante, M, González, JR, et al. (2011) Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS ONE 6, e17181.
83. Lattka, E, Rzehak, P, Szabó, É, et al. (2011) Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am J Clin Nutr 93, 382391.
84. Ding, Z, Liu, GL, Li, X, et al. (2016) Association of polyunsaturated fatty acids in breast milk with fatty acid desaturase gene polymorphisms among Chinese lactating mothers. Prostaglandins Leukot Essent Fatty Acids 109, 6671.
85. Li, X, Gan, ZW, Ding, Z, et al. (2017) Genetic variants in the ELOVL5 but not ELOVL2 gene associated with polyunsaturated fatty acids in Han Chinese breast milk. Biomed Environ Sci 30, 6467.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed