Skip to main content Accessibility help
×
Home

Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats

  • Malen Massot-Cladera (a1), Mar Abril-Gil (a1), Sandra Torres (a1), Àngels Franch (a1), Margarida Castell (a1) and Francisco J. Pérez-Cano (a1)...

Abstract

A diet containing 10 % cocoa, a rich source of polyphenols and fibre, is able to modify intestinal immune status as well as microbiota composition. The present study was aimed at investigating whether cocoa flavonoid content is uniquely responsible for these modulatory effects of cocoa, and to establish whether these effects depend on the rat strain. To this end, 3-week-old Wistar and Brown Norway rats were fed, for 4 weeks, either a standard diet or the following three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0·2 % polyphenols (from conventional defatted cocoa), and two others with 0·4 and 0·8 % polyphenols (from non-fermented cocoa, very rich in polyphenols). Serum Ig concentrations, faecal IgA levels, microbiota composition and IgA-coating bacterial proportion were evaluated at the beginning and at the end of the study. After the nutritional intervention, the composition of lymphocytes in Peyer's patches and mesenteric lymph nodes was evaluated. In some respects, the Wistar strain was more sensitive to the impact of the cocoa diets than the Brown Norway strain. After 4 weeks of dietary intervention, similar modulatory effects of the diets containing 0·2 and 0·8 % polyphenols on mucosal IgA levels and microbiota composition were found, although the 0·2 % diet, with a higher proportion of theobromine and fibre, had more impact, suggesting that polyphenols are not the only components involved in such effects.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: F. J. Pérez-Cano, fax +34 93 403 59 01, email franciscoperez@ub.edu

References

Hide All
1 Katz, DL, Doughty, K & Ali, A (2011) Cocoa and chocolate in human health and disease. Antioxid Redox Signal 15, 27792811.
2 Tomás-Berberán, FA, Cienfuegos-Jovellanos, E, Marín, A, et al. (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55, 39263935.
3 Sehm, J, Lindermayer, H, Dummer, C, et al. (2007) The influence of polyphenol rich apple pomare or red-wine pomace diet on the gut morphology in weaning piglets. J Anim Physiol Anim Nutr (Berl) 91, 289296.
4 Pérez-Cano, FJ, Massot-Cladera, M, Franch, A, et al. (2013) The effects of cocoa on the immune system. Front Pharmacol 4, 112.
5 Ramiro-Puig, E, Pérez-Cano, FJ, Ramos-Romero, S, et al. (2008) Intestinal immune system of young rats influenced by cocoa-enriched diet. J Nutr Biochem 19, 555565.
6 Mora, JR & von Andrian, UH (2008) Differentiation and homing of IgA-secreting cells. Mucosal Immunol 1, 96109.
7 Corthésy, B (2007) Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol 178, 2732.
8 MacPherson, AJ, McCoy, KD, Johansen, FE, et al. (2008) The immune geography of IgA induction and function. Mucosal Immunol 1, 1122.
9 Chen, CM, Li, SC, Lin, YL, et al. (2005) Consumption of purple sweet potato leaves modulates human immune response: T-lymphocyte functions, lytic activity of natural killer cell and antibody production. World J Gastroenterol 11, 57775781.
10 Okazaki, Y, Han, Y, Kayahata, M, et al. (2010) Consumption of curcumin elevates fecal immunoglobulin A, an index of intestinal immune function, in rats fed a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 56, 6871.
11 Pérez-Berezo, T, Franch, A, Ramos-Romero, S, et al. (2011) Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats. Mol Nutr Food Res 55, S56S66.
12 Massot-Cladera, M, Pérez-Berezo, T, Franch, A, et al. (2012) Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch Biochem Biophys 527, 105112.
13 Abreu, MT (2010) Toll-like receptor signaling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10, 131144.
14 Hill, DA & Artis, D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28, 623667.
15 Etxeberria, U, Fernández-Quintela, A, Milagro, FI, et al. (2013) Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61, 95179533.
16 Van Duynhoven, J, Vaughan, EE, van Dorsten, F, et al. (2013) Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health. Am J Clin Nutr 98, 1631S1641S.
17 Tzounis, X, Rodríguez-Mateos, A, Vulevic, J, et al. (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93, 6272.
18 Pérez-Berezo, T, Ramiro-Puig, E, Pérez-Cano, FJ, et al. (2009) Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats. Mol Nutr Food Res 53, 389397.
19 Cienfuentes-Jovellanos, E, Pasamar, MA, Fritz, J, et al. (2007) Method for Obtaining Polyphenol-Rich Cocoa Powder with a Low Fat Content and Cocoa thus Obtained. Patent Cooperation Treaty (PCT) WO 2007/096449A1 . Spain: Natraceutical Industrial.
20 Ramiro-Puig, E, Pérez-Cano, FJ, Ramírez-Santana, C, et al. (2007) Spleen lymphocyte function modulated by a cocoa-enriched diet. Clin Exp Immunol 149, 535542.
21 Massot-Cladera, M, Franch, A, Castellote, C, et al. (2013) Cocoa flavonoid-enriched diet modulates systemic and intestinal immunoglobulin synthesis in adult Lewis rats. Nutrients 5, 32723286.
22 Dulloo, AG (2011) The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev 12, 866883.
23 Singh, A, Holvoet, S & Mercenier, A (2011) Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 41, 13461359.
24 Castell, M, Pérez-Cano, FJ, Abril-Gil, M, et al. (2014) Flavonoids on allergy. Curr Pharm Des 20, 972987.
25 Pérez-Berezo, T, Franch, A, Castellote, C, et al. (2012) Mechanisms involved in down-regulation of intestinal IgA in rats by high cocoa intake. J Nutr Biochem 23, 838844.
26 Akiyama, H, Sato, Y, Watanable, T, et al. (2005) Dietary unripe apple polyphenols inhibits the development of food allergies in murine models. FEBS Lett 579, 44854491.
27 Hara, H, Orita, N, Hatano, S, et al. (1995) Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. J Vet Med Sci 57, 4549.
28 Tzounis, X, Vulevic, J, Kuhnle, GG, et al. (2008) Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99, 782792.
29 Bialonska, D, Kasimsetty, SG, Schrader, KK, et al. (2009) The effect of pomegranate (Punica granatum L.) by products and ellagitannins on the growth of human gut bacteria. J Agric Food Chem 57, 83448349.
30 Cueva, C, Sánchez-Patán, F, Monagas, M, et al. (2013) In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol 83, 792805.
31 Dolara, P, Luceri, C, De Filippo, C, et al. (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591, 237246.
32 Sembries, S, Dongowski, G, Mehrländer, K, et al. (2006) Physiological effects of extraction juices from apple, grape, and red beet pomaces in rats. J Agric Food Chem 54, 1026910280.
33 Selma, MV, Espín, JC & Tomás-Barberán, FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57, 64856501.
34 Puupponen-Pimiä, R, Nohynek, L, Hartmann-Schmidlin, S, et al. (2005) Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol 98, 9911000.
35 Duda-Chodak, A (2012) The inhibitory effect of polyphenols on human gut microbiota. J Physiol Pharmacol 63, 497503.
36 Daims, H, Brühl, A, Amann, R, et al. (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434444.
37 Manz, W, Amann, R, Ludwig, W, et al. (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142, 10971106.
38 Langendijk, PS, Schut, F, Jansen, GJ, et al. (1995) Quantitative fluorescent in situ hybridisation of Bifidobacterium spp. with genus specific 16S rRNA targeted probes and its application in fecal samples. Appl Environ Micriobiol 61, 30693075.
39 Harmsen, HJM, Elfferich, P, Schut, F, et al. (1999) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11, 312.
40 Poulsen, LK, Lan, F, Kristensen, CS, et al. (1994) Free in PMC spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62, 51915194.
41 Franks, AH, Harmsen, HJM, Raangs, GC, et al. (1995) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 33363345.
42 Trebesius, K, Leitritz, L, Adler, K, et al. (2000) Culture independent and rapid identification of bacterial pathogens in necrotizing fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. Med Microbiol Immunol 188, 169175.
43 Wallner, G, Amann, R & Beisket, W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136143.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed