Skip to main content Accessibility help
×
Home

Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats

  • Hafez R. Madkor (a1), Sherif W. Mansour (a1) and Gamal Ramadan (a2) (a3)

Abstract

Spices which show hypoglycaemic, hypolipidaemic and antioxidant activities may have a role in the treatment of diabetes and its complications. The present study aimed to compare the modulatory effects of garlic, ginger, turmeric and their mixture on the metabolic syndrome and oxidative stress in streptozotocin (STZ)–nicotinamide diabetic rats. Diabetes was induced in overnight fasted rats by a single intraperitoneal injection of STZ (65 mg/kg body weight) and nicotinamide (110 mg/kg body weight, 15 min before STZ injection). Diabetic rats orally received either distilled water (as vehicle) or 200 mg/kg body weight of garlic bulb, ginger rhizome or turmeric rhizome powder suspension separately or mixed together (GGT mixture) for twenty-eight consecutive days. The results showed that these spices and their mixture significantly alleviated (80–97 %, P < 0·05–0·001) signs of the metabolic syndrome (hyperglycaemia and dyslipidaemia), the elevation in atherogenic indices and cellular toxicity in STZ–nicotinamide diabetic rats by increasing the production of insulin (26–37 %), enhancing the antioxidant defence system (31–52 %, especially GSH) and decreasing lipid peroxidation (60–97 %). The greatest modulation was seen in diabetic rats that received garlic and the GGT mixture (10–23 % more than that in the ginger and turmeric groups). In conclusion, garlic or the mix including garlic appears to have an impact on each of the measures more effectively than ginger and turmeric and may have a role in alleviating the risks of the metabolic syndrome and cardiovascular complications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: G. Ramadan, fax +20 2 26842123, email gamal_ramadan@hotmail.com

References

Hide All
1Lefebvre, P (2005) Diabetes yesterday, today and tomorrow. The action of the International Diabetes Federation. Rev Med Liege 60, 273277.
2Knuiman, MW, Hung, J, Divitini, ML, et al. (2009) Utility of the metabolic syndrome and its components in the prediction of incident cardiovascular disease: a prospective cohort study. Eur J Cardiovasc Prev Rehabil 16, 235241.
3Chong, PH & Bachenheimer, BS (2000) Current, new and future treatments in dyslipidaemia and atherosclerosis. Drugs 60, 5593.
4Merzouk, H, Madani, S, Chabane Sari, D, et al. (2000) Time course of changes in serum glucose, insulin, lipids and tissue lipase activities in macrosomic offspring of rats with streptozotocin-induced diabetes. Clin Sci (Lond) 98, 2130.
5Murugan, P & Pari, L (2007) Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. J Ethnopharmacol 113, 479486.
6Masiello, P, Broca, C, Gross, R, et al. (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47, 224229.
7Anwar, MM & Meki, AR (2003) Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol 135, 539547.
8Barber, DA & Harris, SR (1994) Oxygen free radicals and antioxidants: a review. Am Pharm NS 34, 2635.
9Eidi, A, Eidi, M & Esmaeili, E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13, 624629.
10Al-Amin, ZM, Thomson, M, Al-Qattan, KK, et al. (2006) Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr 96, 660666.
11Suryanarayana, P, Satyanarayana, A, Balakrishna, N, et al. (2007) Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med Sci Monit 13, BR286BR292.
12Shishodia, S, Sethi, G & Aggarwal, BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056, 206217.
13Amagase, H (2006) Clarifying the real bioactive constituents of garlic. J Nutr 136, 716S725S.
14Ali, BH, Blunden, G, Tanira, MO, et al. (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46, 409420.
15Lowry, OH, Rosebrough, NJ, Farr, AL, et al. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.
16Trinder, P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6, 2427.
17Knight, JA, Anderson, S & Rawle, JM (1972) Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin Chem 18, 199202.
18McGowan, MW, Artiss, JD, Strandbergh, DR, et al. (1983) A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29, 538542.
19Allain, CC, Poon, LS, Chan, CS, et al. (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20, 470475.
20Grove, TH (1979) Effect of reagent pH on determination of high-density lipoprotein cholesterol by precipitation with sodium phosphotungstate–magnesium. Clin Chem 25, 560564.
21Friedewald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499502.
22Reitman, S & Frankel, S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28, 5663.
23Wenger, C (1984) Alkaline phosphatase. In Clinical Chemistry, pp. 10941098 [Kaplan, A, editor]. St Louis, MO: Mosby.
24Miller, NJ, Rice-Evans, C & Davies, MJ (1993) A new method for measuring antioxidant activity. Biochem Soc Trans 21, 95S.
25Ohkawa, H, Ohishi, N & Yagi, K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 351358.
26Ellman, GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82, 7077.
27Turner, JR & Thayer, JF (editors) (2001) Introduction to Analysis of Variance: Design, Analysis and Interpretation. Thousand Oaks, CA: Sage Publications.
28Lee, YM, Gweon, OC, Seo, YJ, et al. (2009) Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr Res Pract 3, 156161.
29Seo, YJ, Gweon, OC, Lee, YM, et al. (2009) Effect of garlic and aged black garlic on hyperglycemia and dyslipidemia in animal model of type 2 diabetes mellitus. J Food Sci Nutr 14, 17.
30Bhandari, U, Kanojia, R & Pillai, KK (2005) Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J Ethnopharmacol 97, 227230.
31Ojewole, JA (2006) Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res 20, 764772.
32Fuhrman, B, Rosenblat, M, Hayek, T, et al. (2000) Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. J Nutr 130, 11241131.
33Ahmed, RS, Seth, V & Banerjee, BD (2000) Influence of dietary ginger (Zingiber officinale Rosc.) on antioxidant defense system in rat: comparison with ascorbic acid. Indian J Exp Biol 38, 604606.
34Srivivasan, A, Menon, VP, Periaswamy, V, et al. (2003) Protection of pancreatic beta-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharm Pharm Sci 6, 327333.
35Okada, K, Wangpoengtrakul, C, Tanaka, T, et al. (2001) Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr 131, 20902095.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed