Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-09T09:13:05.831Z Has data issue: false hasContentIssue false

Sphingolipids and acylcarnitines are altered in placentas from women with gestational diabetes mellitus

Published online by Cambridge University Press:  21 December 2022

Gabriela D. A. Pinto*
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Antonio Murgia
Affiliation:
Department of Biochemistry, Cambridge, UK
Carla Lai
Affiliation:
University of Cagliari, Department of Life and Environmental Science, Cagliari Via Ospedale, Cagliari, Italy
Carolina S. Ferreira
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Vanessa A. Goes
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Deborah de A. B. Guimarães
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Layla G. Ranquine
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Desirée L. Reis
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
Claudio J. Struchiner
Affiliation:
School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro, Brazil Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Julian L. Griffin
Affiliation:
Department of Biochemistry, Cambridge, UK Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Graham J. Burton
Affiliation:
Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
Alexandre G. Torres
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Tatiana El-Bacha*
Affiliation:
LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
*
*Corresponding authors: Gabriela D. A. Pinto, email gabidap@gmail.com; Tatiana El-Bacha, email tatiana@nutricao.ufrj.br
*Corresponding authors: Gabriela D. A. Pinto, email gabidap@gmail.com; Tatiana El-Bacha, email tatiana@nutricao.ufrj.br

Abstract

Gestational diabetes mellitus (GDM) is the most common medical complication of pregnancy and a severe threat to pregnant people and offspring health. The molecular origins of GDM, and in particular the placental responses, are not fully known. The present study aimed to perform a comprehensive characterisation of the lipid species in placentas from pregnancies complicated with GDM using high-resolution MS lipidomics, with a particular focus on sphingolipids and acylcarnitines in a semi-targeted approach. The results indicated that despite no major disruption in lipid metabolism, placentas from GDM pregnancies showed significant alterations in sphingolipids, mostly lower abundance of total ceramides. Additionally, very long-chain ceramides and sphingomyelins with twenty-four carbons were lower, and glucosylceramides with sixteen carbons were higher in placentas from GDM pregnancies. Semi-targeted lipidomics revealed the strong impact of GDM on the placental acylcarnitine profile, particularly lower contents of medium and long-chain fatty-acyl carnitine species. The lower contents of sphingolipids may affect the secretory function of the placenta, and lower contents of long-chain fatty acylcarnitines is suggestive of mitochondrial dysfunction. These alterations in placental lipid metabolism may have consequences for fetal growth and development.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Diabetes Association (2019) Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42, Suppl. 1, S13S28.CrossRefGoogle Scholar
FEMINA, Brazilian Federation for the Gynecologist and Obstetrician Associations (Frebasgo), Brazilian Society for Diabetes, et al. (2019) Rastreamento e diagnóstico de diabetes mellitus gestacional no Brasil. FEMINA 47, Suppl. 11, 786796.Google Scholar
Reece, EA (2010) The fetal and maternal consequences of gestational diabetes mellitus. J Matern Fetal Neonatal Med 23, 199203.CrossRefGoogle ScholarPubMed
Farrar, D, Simmonds, M, Bryant, M, et al. (2016) Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ 354, i4694.CrossRefGoogle ScholarPubMed
Kramer, CK, Campbell, S & Retnakaran, R (2019) Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 62, 905914.CrossRefGoogle ScholarPubMed
Ryckman, KK, Spracklen, CN & Smith, CJ (2015) Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG 122, 643651.CrossRefGoogle ScholarPubMed
Hivert, MF, Cardenas, A & Allard, C (2020). Interplay of placental DNA methylation and maternal insulin sensitivity in pregnancy. Diabetes 69, 484492.CrossRefGoogle ScholarPubMed
Radaelli, T, Leqercq, J & Vasrastehpour, A (2009) Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstetr Gynecol 201, 209.e1209.e10.CrossRefGoogle ScholarPubMed
Lei, T, Ping, L & Ling, L (2020) Whole transcriptome expression profiles in placenta samples from women with gestational diabetes mellitus. J Diabetes Investig 11, 13071317.Google Scholar
Borodzicz, S, Czarzasta, K, Kuch, M, et al. (2015) Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14, 55.CrossRefGoogle ScholarPubMed
Bhagirath, C & Summers, SA (2021) Ceramides in metabolism: key lipotoxic players. Annu Rev Physiol 83, 303330.Google Scholar
Matsuzaka, T, Kuba, M, Koyasu, S, et al. (2020) Hepatocyte ELOVL fatty acid elongase 6 determines ceramide acyl-chain length and hepatic insulin sensitivity in mice. Hepatology 71, 16091625.CrossRefGoogle ScholarPubMed
Turpin, SM, Nicholls, HT, Willmes, DM, et al. (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20, 678686.CrossRefGoogle ScholarPubMed
Keppley, LJW, Walker, SJ, Gademsey, AN, et al. (2020) Nervonic acid limits weight gain in a mouse model of diet-induced obesity. FASEB J 34, 1531415326.CrossRefGoogle Scholar
Furse, S, White, SL, Meek, CL, et al. (2019) Altered triglyceride and phospholipid metabolism predates the diagnosis of gestational diabetes in obese pregnancy. Mol Omics 15, 420430.CrossRefGoogle ScholarPubMed
Mejia, JF, Hirschi, KM, Tsai, KYF, et al. (2019) Differential placental ceramide levels during gestational diabetes mellitus (GDM). Reprod Biol Endocrinol 17, 81.CrossRefGoogle ScholarPubMed
Abbade, J, Klemetti, MM, Farrell, A, et al. (2020) Increased placental mitochondrial fusion in gestational diabetes mellitus: an adaptive mechanism to optimize feto-placental metabolic homeostasis? BMJ Open Diabetes Res Care 8, e000923.CrossRefGoogle ScholarPubMed
Schooneman, MG, Vaz, FM, Houten, SM, et al. (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62, 18.CrossRefGoogle ScholarPubMed
Batchuluun, B, Al Rijjal, D & Prentice, KJ (2018) elevated medium-chain acylcarnitines are associated with gestational diabetes mellitus and early progression to type 2 diabetes and induce pancreatic β-cell dysfunction. Diabetes 67, 885897.CrossRefGoogle ScholarPubMed
Nevalainen, J, Sairanen, M, Appelblom, H, et al. (2016) First-trimester maternal serum amino acids and acylcarnitines are significant predictors of gestational diabetes. RDS 13, 236245.Google ScholarPubMed
Calabuig-Navarro, V, Haghiac, M, Minium, J, et al. (2017) Effect of maternal obesity on placental lipid metabolism. Endocrinology 158, 25432555.CrossRefGoogle ScholarPubMed
Bucher, M, Montaniel, K, Myatt, L, et al. (2021) Dyslipidemia, insulin resistance, and impairment of placental metabolism in the offspring of obese mothers. J Dev Orig Health Dis 12, 738747.CrossRefGoogle ScholarPubMed
Powell, TL, Barner, K, Madi, L, et al. (2021) Sex-specific responses in placental fatty acid oxidation, esterification and transfer capacity to maternal obesity. Biochim Biophys Acta Mol Cell Biol Lipids 1866, 158861.CrossRefGoogle ScholarPubMed
Burton, G, Sebire, NJ, Myatt, L, et al. (2014) Optimising sample collection for placental research. Placenta 35, 922.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.CrossRefGoogle ScholarPubMed
Liggi, S, Hinz, C, Hall, Z, et al. (2018) KniMet: a pipeline for the processing of chromatography-mass spectrometry metabolomics data. Metabolomics 14, 52.Google ScholarPubMed
Fahy, E, Subramaniam, S, Murphy, RC, et al. (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50, S9S14.CrossRefGoogle ScholarPubMed
BRASIL (2019) Guidelines of the Brazilian Society for Diabetes 2019–2020. Brasília: Brazilian Society for Diabetes.Google Scholar
Brazilian Society for Pediatrics (2009) Nutritional Assessment for Children and Adolescents - Guidelines of the Brazilian Society for Pediatrics. Departamento de Nutrologia. São Paulo: Sociedade Brasileira de Pediatria.Google Scholar
Liebisch, G, Vizcaíno, JA, Köfeler, H, et al. (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54, 15231530.CrossRefGoogle ScholarPubMed
Visiedo, F, Bugatto, F, Sánchez, V, et al. (2013) High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta. Am J Physiol Endocrinol Metab 305, E205E212.CrossRefGoogle ScholarPubMed
Hulme, CH, Nicolaou, A, Murphy, SA, et al. (2019) The effect of high glucose on lipid metabolism in the human placenta. Sci Rep 9, 14114.CrossRefGoogle ScholarPubMed
Belcastro, L, Ferreira, CS, Saraiva, MA, et al. (2021) Decreased fatty acid transporter FABP1 and increased isoprostanes and neuroprostanes in the human term placenta: implications for inflammation and birth weight in maternal pre-gestational obesity. Nutrients 13, 2768.CrossRefGoogle ScholarPubMed
Cheng, ZJ, Singh, RD, Sharma, DK, et al. (2006) Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell 17, 31973210.CrossRefGoogle ScholarPubMed
Hannun, YA & Obeid, LM (2018) Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19, 175191.CrossRefGoogle ScholarPubMed
Del Gaudio, I, Sasset, L & Lorenzo, AD (2020) Sphingolipid signature of human feto-placental vasculature in preeclampsia. Int J Mol Sci 21, 1019.CrossRefGoogle ScholarPubMed
Khan, SR, Manialawy, Y, Obersterescu, A, et al. (2020) Diminished sphingolipid metabolism, a hallmark of future type 2 diabetes pathogenesis, is linked to pancreatic β cell dysfunction. iScience 23, 101566.CrossRefGoogle ScholarPubMed
Ausman, J, Abbade, J, Ermini, L, et al. (2018) Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis 9, 298.CrossRefGoogle ScholarPubMed
Bieberich, E (2018) Sphingolipids and lipid rafts: novel concepts and methods of analysis. Chem Phys Lipids 216, 114131.CrossRefGoogle ScholarPubMed
Rondelli, V, Pršić, J, Deboever, E, et al. (2021) Sitosterol and glucosylceramide cooperative transversal and lateral uneven distribution in plant membranes. Sci Rep 11, 21618.CrossRefGoogle ScholarPubMed
Godoy, V & Riquelme, G (2008) Distinct lipid rafts in subdomains from human placental apical syncytiotrophoblast membranes. J Membr Biol 224, 21.CrossRefGoogle ScholarPubMed
Simons, K & Ikonen, E (1997) Functional rafts in cell membranes. Nature 387, 569572.CrossRefGoogle ScholarPubMed
Van Meer, G, Voelker, D & Feigenson, G (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9, 112124.CrossRefGoogle ScholarPubMed
Slotte, JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52, 424437.CrossRefGoogle ScholarPubMed
Vázquez, RF, Daza, MMA, Pavinatto, FJ, et al. (2019) Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: a PM-IRRAS study. Colloids Surf B 173, 549556.CrossRefGoogle ScholarPubMed
González-Ramírez, EJ, García-Arribas, AB, Sot, J, et al. (2020) C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Sci Rep 10, 14085.CrossRefGoogle Scholar
Raichur, S, Wang, ST, Chan, PW, et al. (2014) CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20, 687695.CrossRefGoogle ScholarPubMed
Aerts, JM, Ottenhoff, R, Powlson, AS, et al. (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56, 13411349.CrossRefGoogle ScholarPubMed
Mihalik, SJ, Goodpaster, BH, Kelley, DE, et al. (2010) Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 18, 16951700.CrossRefGoogle ScholarPubMed
Pantham, P, Aye, IL & Powell, TL (2015) Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 36, 709715.CrossRefGoogle ScholarPubMed
Valent, AM, Choi, H, Kolahi, KS, et al. (2021) Hyperglycemia and gestational diabetes suppress placental glycolysis and mitochondrial function and alter lipid processing. FASEB J 35, e21423.CrossRefGoogle ScholarPubMed
Ohno, Y, Suto, S, Yamanaka, M, et al. (2010) ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci USA 107, 1843918444.CrossRefGoogle ScholarPubMed
Yung, HW, Alnæs-Katjavivi, P, Jones, CJ, et al. (2016) Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia 59, 22402250.CrossRefGoogle ScholarPubMed
Supplementary material: File

Pinto et al. supplementary material

Pinto et al. supplementary material

Download Pinto et al. supplementary material(File)
File 615.2 KB