Skip to main content
×
Home

Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men

  • L. S. Piers (a1), Karen Z. Walker (a2), Rachel M. Stoney (a3), Mario J. Soares (a4) and Kerin O'Dea (a1)...
Abstract

A randomised crossover study of eight overweight or obese men (aged 24–49 years, BMI 25.5–31.3 kg/m2), who followed two diets for 4 weeks each, was performed to determine whether substitution of saturated fat with monounsaturated fat affects body weight and composition. Subjects were provided with all food and beverages as modules (selected ad libitum) of constant macronutrient composition, but differing energy content. The % total energy from saturated fat, monounsaturated fat and polyunsaturated fat was 24, 13 and 3% respectively on the saturated fatty acid (SFA)-rich diet and 11, 22 and 7% respectively on the monounsaturated fatty acid (MUFA)-rich diet. MUFA accounted for about 80% of the unsaturated fats consumed on both diets. Body composition, blood pressure, energy expenditure (resting and postprandial metabolic rates, substrate oxidation rate, physical activity), serum lipids, the fatty acid profile of serum cholesteryl esters and plasma glucose and insulin concentrations were measured before and after each diet period. Significant (P≤0·05) differences in total cholesterol and the fatty acid composition of serum cholesteryl esters provided evidence of dietary adherence. The men had a lower weight (-2·1 (se 0·4) kg, P=0·0015) and fat mass (-2·6 (se 0·6) kg, P= 0·0034) at the end of the MUFA-rich diet as compared with values at the end of the SFA-rich diet. No significant differences were detected in energy or fat intake, energy expenditure, substrate oxidation rates or self-reported physical activity. Substituting dietary saturated with unsaturated fat, predominantly MUFA, can induce a small but significant loss of body weight and fat mass without a significant change in total energy or fat intake.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr L. S. Piers, present address, Health Surveillance and Evaluation Section, Rural and Regional Health and Aged Care Services, Department of Human Services, Level 18, 120 Spencer Street, Melbourne, Victoria 3000, Australia, fax +61 3 9637 4763, email leonard.piers@dhs.vic.gov.au
References
Hide All
Bell RR, Spencer MJ & Sherriff JL (1997) Voluntary exercise and monounsaturated canola oil reduce fat gain in mice fed diets high in fat. J Nutr 127, 20062010.
Ben-Porat M, Sideman S & Bursztein S (1983) Energy metabolism rate equation for fasting and postabsorptive subjects. Am J Physiol 244, R764R769.
Berrino F, Bellati C, Secreto G, et al. (2001) Reducing bioavailable sex hormones through a comprehensive change in diet: the diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev 10, 2533.
Bligh EG & Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Pharmacol 37, 911917.
Blundell JE & MacDiarmid JI (1997) Fat as a risk factor for over-consumption: satiation, satiety, and patterns of eating. J Am Diet Assoc 97, S63S69.
Bonanome A & Grundy SM (1988) Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med 318, 12441248.
Bray GA & Popkin BM (1998) Dietary fat intake does affect obesity! Am J Clin Nutr 68, 11571173.
Callaway CW, Chumlea WC, Bouchard C, et al. (1988) In Anthropometric Standardisation Reference Manual, pp. 3954 [Lohman, TG, Roche AFMartorell R, editors]. Champaign, IL: Human Kinetics Books.
DeLany JP, Windhauser MM, Champagne CM & Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72, 905911.
deLorgeril M & Salen P (2000) Modified Cretan Mediterranean diet in the prevention of coronary heart disease and cancer. World Rev Nutr Diet 87, 123.
deLorgeril M, Salen P, Martin JL, Monjaud I, Delaye J & Mamelle N (1999) Mediterranean diet traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99, 779785.
Elia M & Livesey G (1988) Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 47, 591607.
English R & Lewis J (1991) Nutritional Values of Australian Foods. Canberra: Australian Government Printing Service.
Flatt JP (1995) Use and storage of carbohydrate and fat. Am J Clin Nutr 61, 952S959S.
Food and Agriculture Organization/World Health Organization/ United Nations University (1985) Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. Technical Report Series no. 724, Geneva: WHO.
Fuentes F, Sanchez E, Sanchez F, et al. (2001) Mediterranean and low-fat diets improve endothelial function in hypercholesterolemic men. Ann Intern Med 134, 11151119.
Garg A (1994) High-monounsaturated fat diet for diabetic patients. Is it time to change the current dietary recommendations? Diabetes Care 17, 242246.
Halvorsen B, Rustan AC, Madsen L, et al. (2001) Effects of long-chain monounsaturated and n−3 fatty acids on fatty acid oxidation and lipid composition in rats. Ann Nutr Metab 45, 3037.
Hegsted DM, Ausman LM, Johnson JA & Dallal GE (1993) Dietary fat and serum lipids: an evaluation of the experimental data. Am J Clin Nutr 57, 875883.
Jones PJ, Pencharz PB & Clandinin MT (1985) Whole body oxidation of dietary fatty acids: implications for energy utilization. Am J Clin Nutr 42, 769777.
Jones PJ, Ridgen JE, Phang PT & Birmingham CL (1992) Influence of dietary fat polyunsaturated to saturated ratio on energy substrate utilization in obesity. Metab Clin Exp 41, 396401.
Jones PJ & Schoeller DA (1988) Polyunsaturated:saturated ratio of diet fat influences energy substrate utilization in the human. Metab Clin Exp 37, 145151.
Kliewer SA, Sundseth SS, Jones SA, et al. (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94, 43184323.
Lissner L & Heitmann BL (1995) Dietary fat and obesity: evidence from epidemiology. Eur J Clin Nutr 49, 7990.
Livesey G & Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47, 608628.
McCarron DA & Reusser ME (1996) Body weight and blood pressure regulation. Am J Clin Nutr 63, 423S425S.
McManus K, Antinoro L & Sacks F (2001) A randomized controlled trial of a moderate-fat, low-energy diet compared with a low fat, low-energy diet for weight loss in overweight adults. Int J Obes Relat Metab Disord 25, 15031511.
Mata P, Garrido JA, Ordovas JM, et al. (1992) Effect of dietary monounsaturated fatty acids on plasma lipoproteins and apolipoproteins in women. Am J Clin Nutr 56, 7783.
Matsuo T, Shimomura Y, Saitoh S, Tokuyama K, Takeuchi H & Suzuki M (1995) Sympathetic activity is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet. Metab Clin Exp 44, 934939.
Piers LS, Walker KZ, Stoney RM, Soares MJ & O'Dea K (2002) The influence of the type of dietary fat on postprandial fat oxidation rates: monounsaturated (olive oil) versus saturated fat (cream). Int J Obes Relat Metab Disord 26, 814821.
Raison JM, Achimastos AM & Safar ME (1992) Sex-dependence of body fat distribution in patients with obesity and hypertension. Clin Exper Hypertens 14A, 505525.
Sanders K, Johnson L, O'Dea K & Sinclair AJ (1994) The effect of dietary fat level and quality on plasma lipoprotein lipids and plasma fatty acids in normocholesterolemic subjects. Lipids 29, 129138.
Sarkkinen ES, Agren JJ, Ahola I, Ovaskainen ML & Uusitupa MI (1994) Fatty acid composition of serum cholesterol esters, and erythrocyte and platelet membranes as indicators of long-term adherence to fat-modified diets. Am J Clin Nutr 59, 364370.
Sinclair AJ, O'Dea K, Dunstan G, Ireland PD & Niall M (1987) Effects on plasma lipids and fatty acid composition of very low fat diets enriched with fish or kangaroo meat. Lipids 22, 523529.
Storlien LH, Hulbert AJ & Else PL (1998) Polyunsaturated fatty acids membrane function and metabolic diseases such as diabetes and obesity. Curr Opin Clin Nutr Metab Care 1, 559563.
Storlien LH, Tapsell LC, Fraser A, et al. (2001) Insulin resistance. Influence of diet and physical activity. World Review Nutr Diet 90, 2643.
Stubbs RJ (1998) Nutrition Society Medal Lecture. Appetite, feeding behaviour and energy balance in human subjects. Proc Nutr Soc 57, 341356.
Stubbs RJ, Harbron CG, Murgatroyd PR & Prentice AM (1995) Covert manipulation of dietary fat and energy density: effect on substrate flux and food intake in men eating ad libitum. Am J Clin Nutr 62, 316329.
Takeuchi H, Matsuo T, Tokuyama K, Shimomura Y & Suzuki M (1995) Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet. J Nutr 125, 920925.
Vessby B, Unsitupa M, Hermansen K, et al. (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 44, 312319.
Walker KZ, O'Dea K, Johnson L, et al. (1996) Body fat distribution and non-insulin-dependent diabetes: comparison of a fiber-rich, high-carbohydrate, low-fat (23%) diet and a 35% fat diet high in monounsaturated fat. Am J Clin Nutr 63, 254260.
Walker KZ, O'Dea K, Nicholson GC & Muir JG (1995) Dietary composition, body weight, and NIDDM. Comparison of high-fiber, high-carbohydrate, and modified-fat diets. Diabetes Care 18, 401403.
Willet WC (2002) Dietary fat plays a major role in obesity: no. Obes Rev 3, 5968.
Williams CM, Francis-Knapper JA, Webb D, et al. (1999) Cholesterol reduction using manufactured foods high in monounsaturated fatty acids: a randomized crossover study. Br J Nutr 81, 439446.
Yandell BS (1997) Practical Data Analysis for Designed Experiments. Boca Raton, FL: CRC Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 215 *
Loading metrics...

Abstract views

Total abstract views: 605 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.