Skip to main content Accessibility help

Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)

  • Cheng Jun Jin (a1), Cathrin Sellmann (a1), Anna Janina Engstler (a1), Doreen Ziegenhardt (a1) and Ina Bergheim (a1)...


Overnutrition, insulin resistance and an impaired intestinal barrier function are discussed as critical factors in the development of non-alcoholic fatty liver disease. Not only butyrate-producing probiotics as well as supplementation of sodium butyrate (SoB) have been suggested to bear protective effects on liver damage of various aetiologies. However, whether an oral consumption of SoB has a protective effect on Western-style diet (WSD)-induced non-alcoholic steatohepatitis (NASH) and if so molecular mechanism involved has not yet been determined. Eight-week-old C57BL/6J mice were pair-fed either a liquid control or WSD±0·6 g/kg body weight SoB. After 6 weeks, markers of liver damage, inflammation, toll-like receptor (TLR)-4 signalling, lipid peroxidation and glucose as well as lipid metabolism were determined in the liver tissue. Tight junction protein levels were determined in the duodenal tissue. SoB supplementation had no effects on the body weight gain or liver weight of WSD-fed mice, whereas liver steatosis and hepatic inflammation were significantly decreased (e.g. less inflammatory foci and neutrophils) when compared with mice fed only a WSD. Tight junction protein levels in duodenum, hepatic mRNA expression of TLR-4 and sterol regulatory element-binding protein 1c were altered similarly in both WSD groups when compared with controls, whereas protein levels of myeloid differentiation primary response gene 88, inducible nitric oxide synthase, 4-hydroxynonenal protein adducts and F4/80 macrophages were only significantly induced in livers of mice fed only the WSD. In summary, these data suggest that an oral supplementation of SoB protects mice from inflammation in the liver and thus from the development of WSD-induced NASH.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)
      Available formats


Corresponding author

* Corresponding author: I. Bergheim, fax +49 3641 949632, email


Hide All
1. Sass, DA, Chang, P & Chopra, KB (2005) Nonalcoholic fatty liver disease: a clinical review. Dig Dis Sci 50, 171180.
2. Blachier, M, Leleu, H, Peck-Radosavljevic, M, et al. (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58, 593608.
3. Leonel, AJ & Alvarez-Leite, JI (2012) Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 15, 474479.
4. Elamin, EE, Masclee, AA, Dekker, J, et al. (2013) Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr 143, 18721881.
5. Huang, XZ, Li, ZR, Zhu, LB, et al. (2014) Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model. J Pediatr Gastroenterol Nutr 59, 264269.
6. Mattace, RG, Simeoli, R, Russo, R, et al. (2013) Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLOS ONE 8, e68626.
7. Qiao, YL, Qian, JM, Wang, FR, et al. (2014) Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells. J Surg Res 187, 653659.
8. Sun, J, Wu, Q, Sun, H, et al. (2014) Inhibition of histone deacetylase by butyrate protects rat liver from ischemic reperfusion injury. Int J Mol Sci 15, 2106921079.
9. Cresci, GA, Bush, K & Nagy, LE (2014) Tributyrin supplementation protects mice from acute ethanol-induced gut injury. Alcohol Clin Exp Res 38, 14891501.
10. Spruss, A, Henkel, J, Kanuri, G, et al. (2012) Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Mol Med 18, 13461355.
11. Spruss, A, Kanuri, G, Stahl, C, et al. (2012) Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab Invest 92, 10201032.
12. Brunt, EM, Kleiner, DE, Wilson, LA, et al. (2011) Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810820.
13. Bergheim, I, Guo, L, Davis, MA, et al. (2006) Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis. J Pharmacol Exp Ther 316, 592600.
14. Wagnerberger, S, Spruss, A, Kanuri, G, et al. (2012) Toll-like receptors 1-9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 107, 17271738.
15. Bergheim, I (2008) Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48, 983992.
16. Spruss, A, Kanuri, G, Wagnerberger, S, et al. (2009) Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 10941104.
17. Kanuri, G, Spruss, A, Wagnerberger, S, et al. (2011) Role of tumor necrosis factor alpha (TNFalpha) in the onset of fructose-induced nonalcoholic fatty liver disease in mice. J Nutr Biochem 22, 527534.
18. Landmann, M, Wagnerberger, S, Kanuri, G, et al. (2015) Beer is less harmful for the liver than plain ethanol: studies in male mice using a binge-drinking model. Alcohol Alcohol 50, 493500.
19. Yang, F, Wang, LK, Li, X, et al. (2014) Sodium butyrate protects against toxin-induced acute liver failure in rats. Hepatobiliary Pancreat Dis Int 13, 309315.
20. Spruss, A, Kanuri, G, Uebel, K, et al. (2011) Role of the inducible nitric oxide synthase in the onset of fructose-induced steatosis in mice. Antioxid Redox Signal 14, 21212135.
21. Kanuri, G & Bergheim, I (2013) In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 14, 1196311980.
22. Tilg, H & Moschen, AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 18361846.
23. Machado, RA, Constantino, LS, Tomasi, CD, et al. (2012) Sodium butyrate decreases the activation of NF-kappa B reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol Dial Transplant 27, 31363140.
24. Tacke, F & Zimmermann, HW (2014) Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60, 10901096.
25. Ohira, H, Fujioka, Y, Katagiri, C, et al. (2013) Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 20, 425442.
26. Ben-Sasson, SZ, Wang, K, Cohen, J, et al. (2013) IL-1beta strikingly enhances antigen-driven CD4 and CD8 T-cell responses. Cold Spring Harb Symp Quant Biol 78, 117124.
27. Ben-Sasson, SZ, Hogg, A, Hu-Li, J, et al. (2013) IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J Exp Med 210, 491502.
28. Ohira, H, Fujioka, Y, Katagiri, C, et al. (2012) Butyrate enhancement of inteleukin-1beta production via activation of oxidative stress pathways in lipopolysaccharide-stimulated THP-1 cells. J Clin Biochem Nutr 50, 5966.
29. Maximos, M, Bril, F, Portillo, SP, et al. (2015) The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 61, 153160.
30. Gao, Z, Yin, J, Zhang, J, et al. (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 15091517.
31. Matis, G, Kulcsar, A, Turowski, V, et al. (2015) Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest Anim Endocrinol 50, 2631.
32. Kanuri, G, Ladurner, R, Skibovskaya, J, et al. (2015) Expression of toll-like receptors 1-5 but not TLR 6-10 is elevated in livers of patients with non-alcoholic fatty liver disease. Liver Int 35, 562568.
33. Miele, L, Valenza, V, La, TG, et al. (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 18771887.
34. Thuy, S, Ladurner, R, Volynets, V, et al. (2008) Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr 138, 14521455.
35. Wang, HB, Wang, PY, Wang, X, et al. (2012) Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 57, 31263135.
36. Ma, X, Fan, PX, Li, LS, et al. (2012) Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci 90, Suppl. 4, 266268.
37. Volynets, V, Kuper, MA, Strahl, S, et al. (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57, 19321941.
38. Liu, B, Qian, J, Wang, Q, et al. (2014) Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion. PLOS ONE 9, e106184.
39. Endo, H, Niioka, M, Kobayashi, N, et al. (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLOS ONE 8, e63388.
40. Wang, X, Sato, R, Brown, MS, et al. (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77, 5362.


Type Description Title
Supplementary materials

Jin supplementary material
Table S1

 Word (15 KB)
15 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed