Skip to main content
×
×
Home

A systematic review of omega-3 fatty acids and osteoporosis

  • Tonya S. Orchard (a1), Xueliang Pan (a2), Fern Cheek (a3), Steven W. Ing (a4) and Rebecca D. Jackson (a4)...
Abstract

Some epidemiological evidence suggests that diets high in omega 3 fatty acids (n-3 FAs) may be beneficial for skeletal health. The aim of this systematic review was to determine if randomized controlled trials (RCTs) support a positive effect of n-3 FAs on osteoporosis. A systematic search was performed in PubMed and EMBASE databases. We included RCTs with skeletal outcomes conducted in adults or children (> = 1 year old) using n-3 FA fortified foods, diets or supplements alone or in combination with other vitamins/minerals, versus placebo. Primary outcomes were incident fracture at any site and bone mineral density (BMD) in g/cm2. Secondary outcomes included bone formation or resorption markers and bone turnover regulators. A total of 10 RCTs met inclusion criteria. Effect sizes with 95 % confidence intervals were estimated to compare studies across various treatments and outcome measures. No pooled analysis was completed due to heterogeneity of studies and small sample sizes. No RCTs included fracture as an outcome. Four studies reported significant favorable effects of n-3 FA on BMD or bone turnover markers. Of these, three delivered n-3 FA in combination with high calcium foods or supplements. Five studies reported no differences in outcomes between n-3 FA intervention and control groups; one study included insufficient data for effect size estimation. Strong conclusions regarding n-3 FAs and bone disease are limited due to the small number and modest sample sizes of RCTs, however, it appears that any potential benefit of n-3 FA on skeletal health may be enhanced by concurrent administration of calcium.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A systematic review of omega-3 fatty acids and osteoporosis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A systematic review of omega-3 fatty acids and osteoporosis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A systematic review of omega-3 fatty acids and osteoporosis
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Rebecca D. Jackson, email Rebecca.Jackson@osumc.edu
References
Hide All
1 Dyerberg, J, Bang, HO, Stoffersen, E, et al. (1978) Eicospentaenoic acid and prevention of thrombosis and atherosclerosis? The Lancet 312, 8081, 117119.
2 Bang, HO, Dyerberg, J & Sinclair, HM (1980) The composition of the Eskimo food in north western Greenland. Am J Clin Nutr 33, 12, 26572661.
3 Bang, HO & Dyerberg, J (1987) Fatty acid pattern and ischaemic heart disease. Lancet 1, 8533, 633.
4 Block, RC, Harris, WS, Reid, KJ, et al. (2008) EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis 197, 2, 821828.
5 Marchioli, R, Schweiger, C, Tavazzi, L, et al. (2001) Efficacy of n-3 polyunsaturated fatty acids after myocardial infarction: results of GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico. Lipids Suppl. S1, 36, 1926.
6 Das, UN (2002) Estrogen, statins, and polyunsaturated fatty acids: similarities in their actions and benefits-is there a common link? Nutrition (Burbank, Los Angeles County, Calif.) 18, 2, 178188.
7 Simopoulos, AP (2002) Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J Am Coll Nutr 21, 6, 495505.
8 Dawczynski, C, Schubert, R, Hein, G, et al. (2009) Long-term moderate intervention with n-3 long-chain PUFA-supplemented dairy products: effects on pathophysiological biomarkers in patients with rheumatoid arthritis. The British journal of nutrition 101, 10, 15171526.
9 Ding, C, Parameswaran, V, Udayan, R, et al. (2008) Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. J Clin Endocrinol Metab 93, 5, 19521958.
10 Cauley, JA, Danielson, ME, Boudreau, RM, et al. (2007) Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study. J Bone Miner Res 22, 7, 10881095.
11 Watkins, BA, Lippman, HE, Le Bouteiller, L, et al. (2001) Bioactive fatty acids: role in bone biology and bone cell function. Progress in lipid research 1-2, 40, 125148.
12 Zhang, Y-H, Heulsmann, A, Tondravi, MM, et al. (2001) Tumor Necrosis Factor-alpha (TNF) Stimulates RANKL-induced Osteoclastogenesis via Coupling of TNF Type 1 Receptor and RANK Signaling Pathways. J Biol Chem 276, 1, 563568.
13 Kruger, MC, Coetzee, M, Haag, M, et al. (2010) Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Progress in lipid research 49, 4, 438449.
14 WHO (2004) WHO Scientific Group on the Assessment of Osteoporoosis at Primary Health Care Level [cited 2011 June 16, 2011]. Available from: http://www.who.int/chp/topics/Osteoporosis.pdf.
15 Hofbauer, LC & Schoppet, M (2004) Clinical Implications of the Osteoprotegerin/RANKL/RANK System for Bone and Vascular Diseases. JAMA 292, 4, 490495.
16 Boyce, BF & Xing, L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis research & therapy 9, Suppl. 1, S1.
17 Coetzee, M, Haag, M & Kruger, MC (2007) Effects of arachidonic acid, docosahexaenoic acid, prostaglandin E(2) and parathyroid hormone on osteoprotegerin and RANKL secretion by MC3T3-E1 osteoblast-like cells. The Journal of nutritional biochemistry 18, 1, 5463.
18 Hogstrom, M, Nordstrom, P & Nordstrom, A (2007) n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 85, 3, 803807.
19 Weiss, LA, Barrett-Connor, E & von Muhlen, D (2005) Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 81, 4, 934938.
20 Macdonald, HM, New, SA, Golden, MHN, et al. (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79, 1, 155165.
21 Trebble, TM, Stroud, MA, Wootton, SA, et al. (2005) High-dose fish oil and antioxidants in Crohn's disease and the response of bone turnover: a randomised controlled trial. The British journal of nutrition 94, 2, 253261.
22 Stipanuk, MH, Biochemical and Physiological Aspects of Human Nutrition: W.B. Saunders Company.
23 Albertazzi, P & Coupland, K (2002) Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention? Maturitas 42, 1, 1322.
24 Kris-Etherton, PM, Taylor, DS, Yu-Poth, S, et al. (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71, Suppl. 1, 179S188S.
25 Whelan, J & Rust, C (2006) Innovative dietary sources of n-3 fatty acids. Annual review of nutrition 26, 75103.
26 Appleby, P, Roddam, A, Allen, N, et al. (2007) Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr 61, 12, 14001406.
27 Martinez-Ramirez, MJ, Palma, S, Martinez-Gonzalez, MA, et al. (2007) Dietary fat intake and the risk of osteoporotic fractures in the elderly. Eur J Clin Nutr 61, 9, 11141120.
28 Orchard, TS, Cauley, JA, Frank, GC, et al. (2010) Fatty acid consumption and risk of fracture in the Women's Health Initiative. The American Journal of Clinical Nutrition 92, 6, 14521460.
29 Farina, EK, Kiel, DP, Roubenoff, R, et al. (2011) Dietary Intakes of Arachidonic Acid and {alpha}-Linolenic Acid Are Associated with Reduced Risk of Hip Fracture in Older Adults. The Journal of nutrition 141, 6, 11461153.
30 Virtanen, JK, Mozaffarian, D, Cauley, JA, et al. (2010) Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res 25, 9, 19721979.
31 Suzuki, T, Yoshida, H, Hashimoto, T, et al. (1997) Case-control study of risk factors for hip fractures in the Japanese elderly by a Mediterranean Osteoporosis Study (MEDOS) questionnaire. Bone 21, 5, 461467.
32 U.S. National Library of Medicine, National Institutes of Health (2011) OLDMEDLINE Data, http://www.nlm.nih.gov/databases/databases_oldmedline.html . Accessed 10/21/11.
33 Balshem, H, Helfand, M, Schunemann, HJ, et al. (2011) GRADE guidelines: 3. Rating the quality of evidence. Journal of clinical epidemiology 64, 4, 401406.
34 Terracciano, L, Brozek, J, Compalati, E, et al. (2010) GRADE system: new paradigm. Current opinion in allergy and clinical immunology 10, 4, 377383.
35 Cohen, J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Assoc.
36 Rosnow, RaRR (1996) Computing contrasts, effect sizes, and counternulls on other people's published data: general procedures for research consumers. Psych Meth 1, 331340.
37 Hedges LaO, I (1985) Statistical Methods for Meta-analys. New York, NY: Academic Press.
38 Martin-Bautista, E, Muà± oz-Torres, M, Fonolla, J, et al. (2010) Improvement of bone formation biomarkers after 1-year consumption with milk fortified with eicosapentaenoic acid, docosahexaenoic acid, oleic acid, and selected vitamins. Nutrition research (New York, NY) 30, 5, 320326.
39 Griel, AE, Kris-Etherton, PM, Hilpert, KF, et al. (2007) An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr J 6, 2.
40 Kruger, MC, Coetzer, H, de Winter, R, et al. (1998) Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging (Milano) 10, 5, 385394.
41 Appleton, KM, Fraser, WD, Rogers, PJ, et al. (2011) Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. The British journal of nutrition 105, 8, 11451149.
42 Salari Sharif, P, Asalforoush, M & Ameri, FThe effect of n-3 fatty acids on bone biomarkers in Iranian postmenopausal osteoporotic women: a randomized clinical trial. AGE 32, 2, 179186.
43 Dodin, S, Lemay, A, Jacques, H, et al. (2005) The Effects of Flaxseed Dietary Supplement on Lipid Profile. Bone Mineral Density, and Symptoms in Menopausal Women: A Randomized, Double-Blind, Wheat Germ Placebo-Controlled Clinical Trial. J Clin Endocrinol Metab 90, 3, 13901397.
44 Cornish, SM & Chilibeck, PD (2009) Alpha-linolenic acid supplementation and resistance training in older adults. Applied physiology, nutrition, and metabolism =  Physiologie appliquee, nutrition et metabolisme 34, 1, 4959.
45 Bassey, EJ, Littlewood, JJ, Rothwell, MC, et al. (2000) Lack of effect of supplementation with essential fatty acids on bone mineral density in healthy pre- and postmenopausal women: two randomized controlled trials of Efacal v. calcium alone. The British journal of nutrition 83, 6, 629635.
46 Kolahi, S, Ghorbanihaghjo, A, Alizadeh, S, et al. (2010) Fish oil supplementation decreases serum soluble receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in female patients with rheumatoid arthritis. Clinical Biochemistry 43, 6, 576580.
47 Jackson, RD, LaCroix, AZ, Gass, M, et al. (2006) Calcium plus Vitamin D Supplementation and the Risk of Fractures. N Engl J Med 354, 7, 669683.
48 Looker, A, Melton, L, Borrud, L, et al. (2011) Changes in femur neck bone density in US adults between 1988–1994 and 2005–2008: demographic patterns and possible determinants. Osteoporosis International 110.
49 Robbins, J, Aragaki, AK, Kooperberg, C, et al. (2007) Factors Associated With 5-Year Risk of Hip Fracture in Postmenopausal Women. JAMA 298, 20, 23892398.
50 Hay, AW, Hassam, AG, Crawford, MA, et al. (1980) Essential fatty acid restriction inhibits vitamin D-dependent calcium absorption. Lipids 15, 4, 251254.
51 Haag, M, Magada, ON, Claassen, N, et al. (2003) Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins, Leukotrienes and Essential Fatty Acids 68, 6, 423429.
52 Sun, L, Tamaki, H, Ishimaru, T, et al. (2004) Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat. Biosci Biotechnol Biochem 68, 12, 26132615.
53 Zwart, SR, Pierson, D, Mehta, S, et al. (2010) Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J Bone Miner Res 25, 5, 10491057.
54 Watkins, BA, Li, Y & Seifert, MF (2001) Nutraceutical fatty acids as biochemical and molecular modulators of skeletal biology. J Am Coll Nutr 20, 5, 410S416S, discussion 7S-20S.
55 Baggio, B, Budakovic, A, Nassuato, MA, et al. (2000) Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int 58, 3, 12781284.
56 Haag, M & Kruger, MC (2001) Upregulation of duodenal calcium absorption by poly-unsaturated fatty acids: events at the basolateral membrane. Medical hypotheses 56, 5, 637640.
57 Leonard, F, Haag, M & Kruger, MC (2001) Modulation of intestinal vitamin D receptor availability and calcium ATPase activity by essential fatty acids. Prostaglandins Leukot Essent Fatty Acids 64, 3, 147150.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score