Skip to main content Accessibility help
×
×
Home

Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age

  • Lin Lu (a1), Bin Chang (a1) (a2), Xiudong Liao (a1), Runlian Wang (a2), Liyang Zhang (a1) and Xugang Luo (a1)...

Abstract

The present study was carried out to evaluate dietary Mn requirements of broilers from 22 to 42 d of age using molecular biomarkers. Chickens were fed a conventional basal maize–soyabean meal diet supplemented with Mn as Mn sulphate in graded concentrations of 20 mg Mn/kg from 0 to 140 mg Mn/kg of diet for 21 d (from 22 to 42 d of age). The Mn response curves were fitted for ten parameters including heart Mn-containing superoxide dismutase (MnSOD) mRNA and its protein expression levels and the DNA-binding activities of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Heart MnSOD mRNA and protein expression levels showed significant quadratic responses (P<0·01), and heart MnSOD activity showed a broken-line response (P<0·01), whereas Mn content and DNA-binding activities of Sp1 and AP-2 in the heart displayed linear responses (P<0·01) to dietary Mn concentrations, respectively. The estimates of dietary Mn requirements were 101, 104 and 94 mg/kg for full expressions of MnSOD mRNA level, MnSOD protein level and MnSOD activity in the heart, respectively. Our findings indicate that heart MnSOD mRNA expression level is a more reliable indicator than heart MnSOD protein expression level and its activity for the evaluation of Mn requirement of broilers, and about 100 mg Mn/kg of diet is required for the full expression of heart MnSOD in broilers fed the conventional basal maize–soyabean meal diet from 22 to 42 d of age.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor X. Luo, fax +86 10 62810184, email wlysz@263.net

References

Hide All
1. Wilgus, HS, Norris, LC & Heuser, GF (1937) The role of manganese and certain other trace elements in the prevention of perosis. J Nutr 14, 155167.
2. Wang, J, Wang, ZY, Wang, ZJ, et al. (2015) Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks. J Bone Miner Metab 33, 2329.
3. Attia, YA, Qota, EM, Bovera, F, et al. (2010) Effect of amount and source of manganese and/or phytase supplementation on productive and reproductive performance and some physiological traits of dual purpose cross-bred hens in the tropics. Br Poult Sci 51, 235245.
4. Huang, YL, Lu, L, Luo, XG, et al. (2007) An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult Sci 86, 25822589.
5. National Research Council (1994) Nutrient Requirements of Poultry, 9th ed. Washington, DC: National Academies Press.
6. Insko, WM, Lyons, M & Martin, JH (1938) The quantitative requirement of the growing chick for manganese. J Nutr 15, 621627.
7. Gallup, WD & Norris, LC (1939) The amount of manganese required to prevent perosis in the chick. Poult Sci 18, 7682.
8. Southern, LL & Baker, DH (1983) Eimeria acervulina infection in chicks fed deficient or excess levels of manganese. J Nutr 113, 172177.
9. Halpin, KM & Baker, DH (1986) Long-term effects of corn, soybean meal, wheat bran, and fish meal on manganese utilization in the chick. Poult Sci 65, 13711374.
10. Halpin, KM & Baker, DH (1986) Manganese utilization in the chick: effects of corn, soybean meal, fish meal, wheat bran, and rice bran on tissue uptake of manganese. Poult Sci 65, 9951003.
11. Halpin, KM & Baker, DH (1987) Mechanism of the tissue manganese-lowering effect of corn, soybean meal, fish meal, wheat bran, and rice bran. Poult Sci 66, 332340.
12. Baker, DH & Halpin, KM (1987) Efficacy of a manganese-protein chelate compared with that of manganese sulfate for chicks. Poult Sci 66, 15611563.
13. Luo, XG, Su, Q, Huang, JC, et al. (1991) A study on the optimal manganese (Mn) level in a practical diet of broiler chicks. Chin J Anim Vet Sci 22, 313317.
14. Li, S, Lin, Y, Lu, L, et al. (2011) An estimation of the manganese requirement for broilers from 1 to 21 days of age. Biol Trace Elem Res 143, 939948.
15. Li, S, Lu, L, Hao, S, et al. (2011) Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens. J Nutr 141, 189194.
16. Li, S, Luo, X, Liu, B, et al. (2004) Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. J Anim Sci 82, 23522363.
17. Jiang, Y, Lu, L, Li, SF, et al. (2016) An optimal dietary non-phytate phosphorus level of broilers fed a conventional corn-soybean meal diet from 4 to 6 weeks of age. Animal 10, 16261634.
18. Lu, L, Ji, C, Luo, XG, et al. (2006) The effect of supplemental manganese in broiler diets on abdominal fat deposition and meat quality. Anim Feed Sci Technol 129, 4959.
19. Black, JR, Ammerman, CB & Henry, PR (1985) Effects of high dietary manganese as manganese oxide or manganese carbonate in sheep. J Anim Sci 60, 861866.
20. Pallauf, J, Kauer, C, Most, E, et al. (2012) Impact of dietary manganese concentration on status criteria to determine manganese requirement in piglets. J Anim Physiol Anim Nutr 96, 9931002.
21. Li, SF, Luo, XG, Lu, L, et al. (2005) Bioavailability of organic manganese sources in broilers fed high dietary calcium. Anim Feed Sci Technol 124, 703715.
22. Zhu, YW, Lu, L, Li, WX, et al. (2015) Effect of dietary manganese on antioxidant status and expression levels of heat-shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures. Br J Nutr 114, 19651974.
23. Li, SF, Luo, XG, Lu, L, et al. (2008) Effect of intravenously injected manganese on the gene expression of manganese-containing superoxide dismutase in broilers. Poult Sci 87, 22592265.
24. Luo, XG, Li, SF, Lu, L, et al. (2007) Gene expression of manganese-containing superoxide dismutase as a biomarker of manganese bioavailability for manganese sources in broilers. Poult Sci 86, 888894.
25. Borrello, S, De Leo, ME & Galeotti, T (1992) Transcriptional regulation of MnSOD by manganese in the liver of manganese-deficient mice and during rat development. Biochem Int 28, 595601.
26. DiSilvestre, D, Kleeberger, SR, Johns, J, et al. (1995) Structure and DNA sequence of the mouse MnSOD gene. Mamm Genome 6, 281284.
27. Xu, Y, Porntadavity, S & St Clair, DK (2002) Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Biochem J 362, 401412.
28. Clerch, LB & Massaro, D (1993) Tolerance of rats to hyperoxia. Lung antioxidant enzyme gene expression. J Clin Invest 91, 499508.
29. Clerch, LB, Massaro, D & Berkovich, A (1998) Molecular mechanisms of antioxidant enzyme expression in lung during exposure to and recovery from hyperoxia. Am J Physiol 274, L313L319.
30. Li, SF, Lu, L, Liao, XD, et al. (2016) Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals 29, 265274.
31. Liao, XD, Li, A, Lu, L, et al. (2013) Optimal dietary zinc levels of broiler chicks fed a corn-soybean meal diet from 22 to 42 days of age. Anim Prod Sci 53, 388394.
32. Liu, SB, Liao, XD, Lu, L, et al. (2016) Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age. Poult Sci (epublication ahead of print version 2 August 2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed