Skip to main content Accessibility help
×
Home

Young women partition fatty acids towards ketone body production rather than VLDL-TAG synthesis, compared with young men

  • Kyriakoula Marinou (a1) (a2), Martin Adiels (a3), Leanne Hodson (a1), Keith N. Frayn (a1), Fredrik Karpe (a1) and Barbara A. Fielding (a1)...

Abstract

Before the menopause, women are relatively protected against CVD compared with men. The reasons for this sex difference are not completely understood, but hepatic fatty acid metabolism may play a role. The present study aimed to investigate the utilisation of plasma NEFA by the liver and to determine whether they are partitioned differently into ketone bodies and VLDL-TAG in healthy, lean young men and women. Volunteers were studied during a prolonged overnight fast (12–19 h) using an intravenous infusion of [U-13C]palmitate. After 12 h fasting, the women had a more advantageous metabolic profile with lower plasma glucose (P < 0·05) and TAG (P < 0·05) but higher plasma NEFA (P < 0·05) concentrations. Plasma 3-hydroxybutyrate (3-OHB) concentrations rose more in women than in men, and the transfer of 13C from [U-13C]palmitate to plasma [13C]3-OHB reached a plateau 6–7 h after the start of the infusion in women but was still increasing at 6 h in men. This implies a slower 3-OHB production rate and/or dilution by other precursor pools in men. In women, the high isotopic enrichment of plasma 3-OHB suggested that systemic plasma fatty acids were the major source of 3-OHB production. However, in men, this was not observed during the course of the study (P < 0·01). There were no sex differences for the incorporation of 13C into VLDL1- or VLDL2-TAG. The ability of young women to partition fatty acids towards ketone body production rather than VLDL-TAG may contribute to their more advantageous metabolic profile compared with young men.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Young women partition fatty acids towards ketone body production rather than VLDL-TAG synthesis, compared with young men
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Young women partition fatty acids towards ketone body production rather than VLDL-TAG synthesis, compared with young men
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Young women partition fatty acids towards ketone body production rather than VLDL-TAG synthesis, compared with young men
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr B. A. Fielding, email barbara.fielding@ocdem.ox.ac.uk

References

Hide All
1 Booth, GL, Kapral, MK, Fung, K, et al. (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368, 2936.
2 Soeters, MR, Sauerwein, HP, Groener, JE, et al. (2007) Gender-related differences in the metabolic response to fasting. J Clin Endocrinol Metab 92, 36463652.
3 Laeger, T, Metges, CC & Kuhla, B (2010) Role of beta-hydroxybutyric acid in the central regulation of energy balance. Appetite 54, 450455.
4 Taggart, AK, Kero, J, Gan, X, et al. (2005) (d)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem 280, 2664926652.
5 Haymond, MW, Karl, IE, Clarke, WL, et al. (1982) Differences in circulating gluconeogenic substrates during short-term fasting in men, women, and children. Metabolism 31, 3342.
6 Magkos, F, Patterson, BW, Mohammed, BS, et al. (2007) Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab 92, 13111318.
7 Adiels, M, Taskinen, MR, Packard, C, et al. (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49, 755765.
8 Humphreys, SM & Frayn, KN (1988) Micro-method for preparing perchloric extracts of blood. Clin Chem 34, 1657.
9 Bickerton, AS, Roberts, R, Fielding, BA, et al. (2007) Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56, 168176.
10 Beylot, M, Beaufrere, B, Normand, S, et al. (1986) Determination of human ketone body kinetics using stable-isotope labelled tracers. Diabetologia 29, 9096.
11 Hodson, L, Bickerton, AS, McQuaid, SE, et al. (2007) The contribution of splanchnic fat to VLDL-triglyceride is greater in insulin resistant than insulin sensitive men and women: studies in the postprandial state. Diabetes 56, 24332441.
12 Wolfe, RR & Chinkes, D (2005) Isotope Tracers in Metabolic Research. Hoboken: John Wiley, Sons, Inc.
13 Hellerstein, MK, Christiansen, M, Kaempfer, S, et al. (1991) Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest 87, 18411852.
14 Tan, GD, Neville, MJ, Liverani, E, et al. (2006) The in vivo effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank. Diabetologia 49, 158168.
15 Havel, RJ, Kane, JP, Balasse, EO, et al. (1970) Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest 49, 20172035.
16 Evans, K, Burdge, GC, Wootton, SA, et al. (2008) Tissue-specific stable isotope measurements of postprandial lipid metabolism in familial combined hyperlipidaemia. Atherosclerosis 197, 164170.
17 Vice, E, Privette, JD, Hickner, RC, et al. (2005) Ketone body metabolism in lean and obese women. Metabolism 54, 15421545.
18 Burdge, GC & Wootton, SA (2003) Conversion of alpha-linolenic acid to palmitic, palmitoleic, stearic and oleic acids in men and women. Prostaglandins Leukot Essent Fatty Acids 69, 283290.
19 Grey, NJ, Karl, I & Kipnis, DM (1975) Physiologic mechanisms in the development of starvation ketosis in man. Diabetes 24, 1016.
20 Johnston, DG & Alberti, KG (1982) Hormonal control of ketone body metabolism in the normal and diabetic state. Clin Endocrinol Metab 11, 329361.
21 Beylot, M, Picard, S, Chambrier, C, et al. (1991) Effect of physiological concentrations of insulin and glucagon on the relationship between nonesterified fatty acids availability and ketone body production in humans. Metabolism 40, 11381146.
22 Merimee, TJ & Fineberg, SE (1973) Homeostasis during fasting. II. Hormone substrate differences between men and women. J Clin Endocrinol Metab 37, 698702.
23 Keller, U, Gerber, PP & Stauffacher, W (1988) Fatty acid-independent inhibition of hepatic ketone body production by insulin in humans. Am J Physiol 254, E694E699.
24 Miles, JM, Haymond, MW, Nissen, SL, et al. (1983) Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man. J Clin Invest 71, 15541561.
25 Mittendorfer, B, Magkos, F, Fabbrini, E, et al. (2009) Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring) 17, 18721877.
26 Wilding, JP (2007) The importance of free fatty acids in the development of type 2 diabetes. Diabet Med 24, 934945.
27 Gibbons, GF, Islam, K & Pease, RJ (2000) Mobilisation of triacylglycerol stores. Biochim Biophys Acta 1483, 3757.
28 Avogaro, A, Nosadini, R, Bier, DM, et al. (1990) Ketone body kinetics in vivo using simultaneous administration of acetoacetate and 3-hydroxybutyrate labelled with stable isotopes. Acta Diabetol Lat 27, 4151.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed