Skip to main content
×
×
Home

A NOTE ON $(m,n)$ -JORDAN DERIVATIONS OF RINGS AND BANACH ALGEBRAS

  • IRENA KOSI-ULBL (a1) and JOSO VUKMAN (a2)
Abstract

In this paper we prove the following result: let $m,n\geq 1$ be distinct integers, let $R$ be an $mn(m+n)|m-n|$ -torsion free semiprime ring and let $D:R\rightarrow R$ be an $(m,n)$ -Jordan derivation, that is an additive mapping satisfying the relation $(m+n)D(x^{2})=2mD(x)x+2nxD(x)$ for $x\in R$ . Then $D$ is a derivation which maps $R$ into its centre.

Copyright
Corresponding author
irena.kosi@um.si
References
Hide All
[1]Beidar, K. I., Brešar, M., Chebotar, M. A. and Martindale III, W. S., ‘On Herstein’s Lie map conjectures II’, J. Algebra 238 (2001), 239264.
[2]Brešar, M., ‘Jordan derivations on semiprime rings’, Proc. Amer. Math. Soc. 104 (1988), 10031006.
[3]Brešar, M., ‘On a generalization of the notion of centralizing mapping’, Proc. Amer. Math. Soc. 114 (1992), 641649.
[4]Brešar, M., ‘Functional identities: a survey’, Contemp. Math. 259 (2000), 93109.
[5]Brešar, M., Chebotar, M. A. and Martindale III, W. S., Functional Identities (Birkhauser, Basel, 2007).
[6]Brešar, M. and Vukman, J., ‘Jordan derivations on prime rings’, Bull. Aust. Math. Soc. 37 (1988), 321322.
[7]Brešar, M. and Vukman, J., ‘On left derivations and related mappings’, Proc. Amer. Math. Soc. 110 (1990), 716.
[8]Brešar, M. and Vukman, J., ‘Jordan (𝜃, 𝜑)-derivations’, Glas. Mat. 26 (1991), 8388.
[9]Cusack, J., ‘Jordan derivations on rings’, Proc. Amer. Math. Soc. 53 (1975), 321324.
[10]Deng, Q., ‘On Jordan left derivations’, Math. J. Okayama Univ. 34 (1992), 145147.
[11]Fošner, M., Širovnik, N. and Vukman, J., ‘A result related to Herstein theorem’, Bull. Malays. Math. Soc., to appear; doi:10.1007/s40840-015-0196-z.
[12]Fošner, M., Ur Rehmann, N. and Vukman, J., ‘An Engel condition with an additive mapping in semiprime rings’, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), 497500.
[13]Fošner, M. and Vukman, J., ‘On some functional equations arising from (m, n)-Jordan derivations and commutativity of prime rings’, Rocky Mountain J. Math. 42 (2012), 11531168.
[14]Herstein, I. N., ‘Jordan derivations of prime rings’, Proc. Amer. Math. Soc. 8 (1957), 11041110.
[15]Johnson, B. E. and Sinclair, A. M., ‘Continuity of derivations and a problem of Kaplansky’, Amer. J. Math. 90 (1968), 10671073.
[16]Posner, E. C., ‘Derivations in prime rings’, Proc. Amer. Math. Soc. 8 (1957), 10931100.
[17]Sinclair, A. M., ‘Continuity of derivations on Banach algebras’, Proc. Amer. Math. Soc. 20 (1969), 166170.
[18]Singer, I. M. and Wermer, J., ‘Derivations on commutative normed algebras’, Math. Ann. 129 (1955), 260264.
[19]Thomas, M. P., ‘The image of a derivation is contained in the radical’, Ann. of Math. (2) 128 (1988), 435460.
[20]Vukman, J., ‘Centralizers on semiprime rings’, Comment. Math. Univ. Carolin. 42 (2001), 237245.
[21]Vukman, J., ‘On left Jordan derivations of rings and Banach algebras’, Aequationes Math. 75 (2008), 260266.
[22]Vukman, J., ‘On (m, n)-Jordan derivations and commutativity of prime rings’, Demonstratio Math. 19 (2008), 774778.
[23]Vukman, J. and Kosi-Ulbl, I., ‘On some equations related to derivations in rings’, Int. J. Math. Sci. (2005), 27032710.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 247 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd May 2018. This data will be updated every 24 hours.