Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T09:00:21.442Z Has data issue: false hasContentIssue false

SOLUTIONS OF A GOŁA̧B–SCHINZEL-TYPE FUNCTIONAL EQUATION BOUNDED ON ‘BIG’ SETS IN AN ABSTRACT SENSE

Published online by Cambridge University Press:  05 March 2010

ELIZA JABŁOŃSKA*
Affiliation:
Department of Mathematics, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland (email: elizapie@prz.edu.pl)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that an exponential real function, which is Lebesgue measurable (Baire measurable, respectively) or bounded on a set of positive Lebesgue measure (of the second category with the Baire property, respectively), is continuous. Here we consider bounded on ‘big’ set solutions of an equation generalizing the exponential equation as well as the Goła̧b–Schinzel equation. Moreover, we unify results into a more general and abstract case.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Aczél, J. and Goła̧b, S., ‘Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphism’, Aequationes Math. 4 (1970), 110.CrossRefGoogle Scholar
[2]Baker, J. A., ‘On some mathematical characters’, Glas. Mat. 25(45) (1990), 319328.Google Scholar
[3]Baron, K. and Kannappan, Pl., ‘On the Cauchy difference’, Aequationes Math. 46 (1993), 112118.CrossRefGoogle Scholar
[4]Beck, A., Corson, H. H. and Simon, A. B., ‘The interior points of the product of two subsets of a locally compact group’, Proc. Amer. Math. Soc. 9 (1958), 648652.CrossRefGoogle Scholar
[5]Brzdȩk, J., ‘Subgroups of the group Z n and a generalization of the Goła̧b–Schinzel functional equation’, Aequationes Math. 43 (1992), 5971.CrossRefGoogle Scholar
[6]Brzdȩk, J., ‘The Christensen measurable solutions of a generalization of the Goła̧b–Schinzel functional equation’, Ann. Polon. Math. 46(3) (1996), 195205.CrossRefGoogle Scholar
[7]Brzdȩk, J., ‘Bounded solutions of the Goła̧b–Schinzel equation’, Aequationes Math. 59 (2000), 248254.CrossRefGoogle Scholar
[8]Brzdȩk, J., ‘The Goła̧b–Schinzel equation and its generalizations’, Aequationes Math. 70 (2005), 1424.CrossRefGoogle Scholar
[9]Brzdȩk, J., ‘Generalizations of some results concerning microperiodic mappings’, Manuscripta Math. 121 (2006), 265276.CrossRefGoogle Scholar
[10]Brzdȩk, J., ‘Continuity of measurable homomorphisms’, Bull. Aust. Math. Soc. 78 (2008), 171176.CrossRefGoogle Scholar
[11]Goła̧b, S. and Schinzel, A., ‘Sur l’équation fonctionnelle f(x+f(x)y)=f(x)f(y)’, Publ. Math. Debrecen 6 (1959), 113125.Google Scholar
[12]Jabłońska, E., ‘On solutions of a generalization of the Goła̧b–Schinzel equation’, Aequationes Math. 71 (2006), 269279.CrossRefGoogle Scholar
[13]Jabłońska, E., ‘Continuity of Lebesgue measurable solutions of a generalized Goła̧b–Schinzel equation’, Demonstratio Math. 39(1) (2006), 9196.CrossRefGoogle Scholar
[14]Jabłońska, E., ‘Functions having the Darboux property and satisfying some functional equation’, Colloq. Math. 114(1) (2009), 113118.CrossRefGoogle Scholar
[15]Kominek, Z. and Kuczma, M., ‘Theorem of Bernstein–Doetsch, Piccard and Mehdi and semilinear topology’, Arch. Math. (Basel) 52 (1989), 595602.CrossRefGoogle Scholar
[16]Kuczma, M., ‘An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality’, PWN–Uniwersytet Śla̧ski, Warszawa–Kraków–Katowice, 1985.Google Scholar
[17]Morgan, J. C. II, ‘Baire category from an abstract viewpoint’, Fundamenta Math. 94 (1977), 1323.Google Scholar
[18]Mureńko, A., ‘On solutions of a common generalization of the Goła̧b–Schinzel equation and of the addition formulae’, J. Math. Anal. Appl. 341 (2008), 12361240.CrossRefGoogle Scholar
[19]Oxtoby, J. C., Measure and Category (Springer, New York, 1971).CrossRefGoogle Scholar
[20]Popa, C. G., ‘Sur l’équation fonctionnelle f(x+f(x)y)=f(x)f(y)’, Ann. Polon. Math. 17 (1965), 193198.CrossRefGoogle Scholar
[21]Sander, W., ‘Ein Beitrag zur Baire-Kategorie-Theorie’, Manuscripta Math. 34 (1981), 7183.CrossRefGoogle Scholar
[22]Sierpiński, W., ‘Sur la dualité entre la première catégorie et la mesure nulle’, Fund. Math. 22 (1934), 276280.CrossRefGoogle Scholar