We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs $(G_n)$ converging to a limit $L$ and a vertex $r$ of $L$, it is possible to find a sequence of vertices $(r_n)$ such that $L$ rooted at $r$ is the limit of the graphs $G_n$ rooted at $r_n$. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices $r$ of $L$. We offer another perspective on the original problem by considering the size of definable sets to which the root $r$ belongs. We prove that if $r$ is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots $(r_n)$ always exists.
Hardin and Taylor proved that any function on the reals—even a nowhere continuous one—can be correctly predicted, based solely on its past behavior, at almost every point in time. They showed that one could even arrange for the predictors to be robust with respect to simple time shifts, and asked whether they could be robust with respect to other, more complicated time distortions. This question was partially answered by Bajpai and Velleman, who provided upper and lower frontiers (in the subgroup lattice of $\mathrm{Homeo}^+(\mathbb {R})$) on how robust a predictor can possibly be. We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem (that every Archimedean group is abelian).
Several different versions of the theory of numerosities have been introduced in the literature. Here, we unify these approaches in a consistent frame through the notion of set of labels, relating numerosities with the Kiesler field of Euclidean numbers. This approach allows us to easily introduce, by means of numerosities, ordinals and their natural operations, as well as the Lebesgue measure as a counting measure on the reals.
For given Boolean algebras
$\mathbb {A}$
and
$\mathbb {B}$
we endow the space
$\mathcal {H}(\mathbb {A},\mathbb {B})$
of all Boolean homomorphisms from
$\mathbb {A}$
to
$\mathbb {B}$
with various topologies and study convergence properties of sequences in
$\mathcal {H}(\mathbb {A},\mathbb {B})$
. We are in particular interested in the situation when
$\mathbb {B}$
is a measure algebra as in this case we obtain a natural tool for studying topological convergence properties of sequences of ultrafilters on
$\mathbb {A}$
in random extensions of the set-theoretical universe. This appears to have strong connections with Dow and Fremlin’s result stating that there are Efimov spaces in the random model. We also investigate relations between topologies on
$\mathcal {H}(\mathbb {A},\mathbb {B})$
for a Boolean algebra
$\mathbb {B}$
carrying a strictly positive measure and convergence properties of sequences of measures on
$\mathbb {A}$
.
Yuval Peres and Perla Sousi showed that the mixing times and average mixing times of reversible Markov chains on finite state spaces are equal up to some universal multiplicative constant. We use tools from nonstandard analysis to extend this result to reversible Markov chains on compact state spaces that satisfy the strong Feller property.
In this paper, we characterize Borel $\unicode[STIX]{x1D70E}$-fields of the set of all fuzzy numbers endowed with different metrics. The main result is that the Borel $\unicode[STIX]{x1D70E}$-fields with respect to all known separable metrics are identical. This Borel field is the Borel $\unicode[STIX]{x1D70E}$-field making all level cut functions of fuzzy mappings from any measurable space to the fuzzy number space measurable with respect to the Hausdorff metric on the cut sets. The relation between the Borel $\unicode[STIX]{x1D70E}$-field with respect to the supremum metric $d_{\infty }$ is also demonstrated. We prove that the Borel field is induced by a separable and complete metric. A global characterization of measurability of fuzzy-valued functions is given via the main result. Applications to fuzzy-valued integrals are given, and an approximation method is presented for integrals of fuzzy-valued functions. Finally, an example is given to illustrate the applications of these results in economics. This example shows that the results in this paper are basic to the theory of fuzzy-valued functions, such as the fuzzy version of Lebesgue-like integrals of fuzzy-valued functions, and are useful in applied fields.
Nešetřil and Ossona de Mendez introduced the notion of first-order convergence, which unifies the notions of convergence for sparse and dense graphs. They asked whether, if (Gi)i∈ℕ is a sequence of graphs with M being their first-order limit and v is a vertex of M, then there exists a sequence (vi)i∈ℕ of vertices such that the graphs Gi rooted at vi converge to M rooted at v. We show that this holds for almost all vertices v of M, and we give an example showing that the statement need not hold for all vertices.
The Kohlrausch functions $\exp (- {t}^{\beta } )$, with $\beta \in (0, 1)$, which are important in a wide range of physical, chemical and biological applications, correspond to specific realizations of completely monotone functions. In this paper, using nonuniform grids and midpoint estimates, constructive procedures are formulated and analysed for the Kohlrausch functions. Sharper estimates are discussed to improve the approximation results. Numerical results and representative approximations are presented to illustrate the effectiveness of the proposed method.
It is well known that an exponential real function, which is Lebesgue measurable (Baire measurable, respectively) or bounded on a set of positive Lebesgue measure (of the second category with the Baire property, respectively), is continuous. Here we consider bounded on ‘big’ set solutions of an equation generalizing the exponential equation as well as the Goła̧b–Schinzel equation. Moreover, we unify results into a more general and abstract case.
Guided by analogy with Euler's spherical excess formula, we define a finite-additive functional on bounded convex polygons in ℝ2 (the Euler functional). Under certain smoothness assumptions, we find some sufficient conditions when this functional can be extended to a planar signed measure. A dual reformulation of these conditions leads to signed measures in the space of lines in ℝ2. In this way we obtain two sets of conditions which ensure that a segment function corresponds to a signed measure in the space of lines. The latter conditions are also necessary.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.