Skip to main content
×
×
Home

Representing Multipliers of the Fourier Algebra on Non-Commutative L p Spaces

  • Matthew Daws (a1)
Abstract

We show that the multiplier algebra of the Fourier algebra on a locally compact group G can be isometrically represented on a direct sum on non-commutative L p spaces associated with the right von Neumann algebra of G. The resulting image is the idealiser of the image of the Fourier algebra. If these spaces are given their canonical operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the noncommutative L p spaces we construct and show that they are completely isometric to those considered recently by Forrest, Lee, and Samei. We improve a result of theirs about module homomorphisms. We suggest a definition of a Figa-Talamanca–Herz algebra built out of these non-commutative L p spaces, say . It is shown that is isometric to L1(G), generalising the abelian situation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Representing Multipliers of the Fourier Algebra on Non-Commutative L p Spaces
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Representing Multipliers of the Fourier Algebra on Non-Commutative L p Spaces
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Representing Multipliers of the Fourier Algebra on Non-Commutative L p Spaces
      Available formats
      ×
Copyright
References
Hide All
[1] Bergh, J. and Löfström, J., Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York, 1976.
[2] Dales, H. G., Banach algebras and automatic continuity. London Mathematical SocietyMonographs. New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
[3] Daws, M., Dual Banach algebras: representations and injectivity. Studia Math. 178(2007), no. 3, 231 275. doi:10.4064/sm178-3-3
[4] De Cannière, J. and Haagerup, U., Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math. 107(1985), no. 2, 455 500. doi:10.2307/2374423
[5] Effros, E. G. and Ruan, Z.-J., Operator spaces. London Mathematical Society Monographs, New Series, 23, The Clarendon Press, Oxford University Press, New York, 2000.
[6] Enock, M. and Schwartz, J.-M., Kac algebras and duality of locally compact groups. Springer-Verlag, Berlin, 1992.
[7] Eymard, P., Lalgèbre de Fourier dun groupe localement compact. Bull. Soc. Math. France 92(1964), 181 236.
[8] Forrest, B., Lee, H., and Samei, E., Projectivity of modules over Fourier algebras. Proc. London Math. Soc, to appear. arXiv:0807.4361v2 [math.FA].
[9] Ghahramani, F., Isometric representation of M(G) on B(H). Glasgow Math. J. 23(1982), no. 2, 119 122. doi:10.1017/S0017089500004882
[10] Haagerup, U., Lp-spaces associated with an arbitrary von Neumann algebra. In: Algèbres dopérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), Colloq. Internat. CNRS, 274, CNRS, Paris, 1979, pp. 175 184.
[11] Haagerup, U., Operator-valued weights in von Neumann algebras. II. J. Funct. Anal. 33(1979), no. 3, 339 361. doi:10.1016/0022-1236(79)90072-7
[12] Herz, C., The theory of p-spaces with an application to convolution operators. Trans. Amer. Math. Soc. 154(1971), 69 82.
[13] Herz, C., Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble) 23(1973), no. 3, 91 123.
[14] Hilsum, M., Les espaces Lp dune algèbre de von Neumann définies par la derivée spatiale. J. Funct. Anal. 40(1981), no. 2, 151 169. doi:10.1016/0022-1236(81)90065-3
[15] Izumi, H., Constructions of non-commutative Lp-spaces with a complex parameter arising from modular actions. Internat. J. Math. 8(1997), no. 8, 1029 1066. doi:10.1142/S0129167X97000494
[16] Izumi, H., Natural bilinear forms, natural sesquilinear forms and the associated duality on non-commutative Lp-spaces. Internat. J. Math. 9(1998), no. 8, 975 1039. doi:10.1142/S0129167X98000439
[17] Johnson, B. E., An introduction to the theory of centralizers. Proc. London Math. Soc. 14(1964), 299 320. doi:10.1112/plms/s3-14.2.299
[18] Junge, M., Neufang, M., and Ruan, Z.-J., A representation theorem for locally compact quantum groups. Internat. J. Math. 20(2009), no. 3, 377 400. doi:10.1142/S0129167X09005285
[19] Junge, M., Ruan, Z.-J., and Xu, Q., Rigid OLp structures of non-commutative Lp-spaces associated with hyperfinite von Neumann algebras. Math. Scand. 96(2005), no. 1, 63 95.
[20] Kosaki, H., Applications of the complex interpolation method to a von Neumann algebra: noncommutative Lp-spaces. J. Funct. Anal. 56(1984), no. 1, 29 78. doi:10.1016/0022-1236(84)90025-9
[21] Kraus, J. and Ruan, Z.-J., Multipliers of Kac algebras. Internat. J. Math. 8(1997), no. 2, 213 248. doi:10.1142/S0129167X9700010X
[22] Kustermans, J. and Vaes, S., Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(2003), no. 1, 68 92.
[23] Kustermans, J., Locally compact quantum groups. In: Quantum independent increment processes. I, Lecture Notes in Math., 1865, Springer, Berlin, 2005, pp. 99 180.
[24] Neufang, M., Ruan, Z.-J., and Spronk, N., Completely isometric representations of McbA(G) and UCB(bG). Trans. Amer. Math. Soc. 360(2008), no. 3, 1133 1161. doi:10.1090/S0002-9947-07-03940-2
[25] Palmer, T.W., Banach algebras and the general theory of -algebras, Vol. 1. Algebras and Banach algebras. Encyclopedia of Mathematics and its Applications, 49, Cambridge University Press, Cambridge, 1994.
[26] Pisier, G., The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Amer. Math. Soc. 122(1996), no. 585.
[27] Pisier, G., Non-commutative vector valued Lp-spaces and completely p-summing maps. Astérisque 247(1998).
[28] Pisier, G., Introduction to operator space theory. London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003.
[29] Pisier, G. and Xu, Q., Non-commutative Lp-spaces. In: Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459 1517.
[30] Runde, V., Operator Figà-TalamancaHerz algebras. Studia Math. 155(2003), no. 2, 153 170. doi:10.4064/sm155-2-5
[31] Spronk, N., Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc. 89(2004), no. 1, 161 192. doi:10.1112/S0024611504014650
[32] Stafney, J. D., The spectrum of an operator on an interpolation space. Trans. Amer. Math. Soc. 144(1969), 333 349. doi:10.1090/S0002-9947-1969-0253054-7
[33] Stratila, S. and Zsodó, L., Lectures on von Neumann algebras. Revision of the 1975 original, Translated from the Romanian by Silviu Teleman, Abacus Press, Tunbridge Wells, 1979.
[34] Takesaki, M., Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, 125, Operator Algebras and Non-commutative Geometry, 6, Springer-Verlag, Berlin, 2003.
[35] Terp, M., Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory 8(1982), no. 2, 327 360.
[36] Uygul, F., A representation theorem for completely contractive dual Banach algebras. J. Operator Theory 62(2009), no. 2, 237 340.
[37] Wendel, J. G., Left centralizers and isomorphisms of group algebras. Pacific J. Math. 2(1952), 251 261.
[38] Xu, Q., Interpolation of operator spaces. J. Funct. Anal. 139(1996), no. 2, 500 539. doi:10.1006/jfan.1996.0094
[39] Young, N. J., Periodicity of functionals and representations of normed algebras on reflexive spaces. Proc. Edinburgh Math. Soc. 20(1976/77), no. 2, 99 120. doi:10.1017/S0013091500010610
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed