Skip to main content
×
×
Home

Desingularized fiber products of semi-stable elliptic surfaces with vanishing third Betti number

  • Chad Schoen (a1)
Abstract
Abstract

Desingularized fiber products of semi-stable elliptic surfaces with Hetale3=0 are classified. Such varieties may play a role in the study of supersingular threefolds, of the deformation theory of varieties with trivial canonical bundle, and of arithmetic degenerations of rigid Calabi–Yau threefolds.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Desingularized fiber products of semi-stable elliptic surfaces with vanishing third Betti number
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Desingularized fiber products of semi-stable elliptic surfaces with vanishing third Betti number
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Desingularized fiber products of semi-stable elliptic surfaces with vanishing third Betti number
      Available formats
      ×
Copyright
References
Hide All
[1]Artin M., Algebraization of formal moduli, I. Global analysis (Papers in honor of K. Kodaira) (University of Tokyo Press, Tokyo, 1969), 2171.
[2]Artin M., The implicit function theorem in algebraic geometry, in International Colloquim on Algebraic geometry (Tata Institute of Fundamental Research, Bombay, 1968) (Oxford University Press, London, 1969), 1334.
[3]Artin M., Algebraization of formal moduli, II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88135.
[4]Artin M., Théorèms de représentabilité pour les espaces algébriques (Presses de l’université de Montréal, Montréal, 1973).
[5]Beauville A., Le nombre minimum de fibres singulières d’une courbe stable sur inline-graphic
$\Bbb P^1$
, in Séminaire sur les pinceaux de courbes de genre au moins deux, Astérisque, vol. 86, ed. L. Szpiro (Société Mathématique de France, Paris, 1981), 97108.
[6]Beauville A., Les familles stables de courbes elliptiques sur inline-graphic
$\Bbb P^1$
admettant quatre fibres singulières
, C. R. Acad. Sci. Paris, Sér. I 294 (1982), 657660.
[7]Deligne P., La conjecture de Weil: II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.
[8]Ekedahl T., On non-liftable Calabi Yau threefolds, Preprint (2004), arXiv:math.AG/0306435 v2.
[9]Faltings G., Schappacher N., Wüstholz G., et al. Rational points, third enlarged edition (Max-Planck-Institut für Mathematik, Bonn, 1992).
[10]Grothendieck A. and Dieudonné J. A., Eléments de Géometrie Algébriques I, Grundlehren der Mathematischen Wissenschaften, Band 166 (Springer, Berlin, 1971).
[11]Grothendieck A., Revêtements étales et groupe fondamental (SGA I), Lecture Notes in Mathematics, vol. 224 (Springer, Berlin, 1971).
[12]Hartshorne R., Algebraic geometry (Springer, New York, 1977).
[13]Hirokado M., A non-liftable Calabi–Yau threefold in characteristic 3, Tohoku Math. J. 51 (1999), 479487.
[14]Hirokado M., Calabi–Yau threefolds obtained as fiber products of elliptic and quasi-elliptic rational surfaces, J. Pure Appl. Algebra 162 (2001), 251271.
[15]Ito H., On unirationality of extremal elliptic surfaces, Math. Ann. 310 (1998), 717733.
[16]Ito H., On extremal elliptic surfaces in characteristic 2 and 3, Hiroshima Math. J. 32 (2002), 179188.
[17]Katz N., Moments, monodromy, and perversity: a diophantine perspective (Princeton University Press, Princeton, NJ, 2005).
[18]Kleiman S., Relative duality for quasi-coherent sheaves, Compositio Math. 41 (1980), 3960.
[19]Knutson D., Algebraic spaces, Lecture Notes in Mathematics, vol. 203 (Springer, Berlin, 1971).
[20]Lang W., Extremal rational elliptic surfaces in characteristic p. I: Beauville surfaces, Math. Z. 207 (1991), 429437.
[21]Lewis J., A survey of the Hodge conjecture (Les publications CRM, Montreal, 1991).
[22]Liu Q., Algebraic geometry and arithmetic curves (Oxford Univeristy Press, Oxford, 2002).
[23]Milne J., Étale cohomology (Princeton University Press, Princeton, NJ, 1980).
[24]Miranda R. and Persson U., On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537558.
[25]Moisezon B., On n-dimensional compact varieties with n algebraically independent meromorphic functions. I, II, III, Amer. Math. Soc. Transl, Ser. 2 63 (1967), 51177.
[26]Rudakov A. N. and Safarevic I. R., Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 848869.
[27]Schoen C., On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988), 177199.
[28]Schoen C., Torsion in the cohomology of fiber products of elliptic surfaces, Preprint (2002).
[29]Schoen C., Complex varieties for which the Chow group mod n is not finite, J. Algebraic Geom. 11 (2002), 41100.
[30]Schoen C., Invariants of certain normal crossing surfaces, in preparation.
[31]Schröer S., Some Calabi–Yau threefolds with obstructed deformations over the Witt vectors, Composito Math. 140 (2004), 15791592.
[32]Schütt M., New examples of modular rigid Calabi–Yau threefolds, Collect. Math. 55 (2004), 219228.
[33]Schweizer A., Extremal elliptic surfaces in characteristic 2 and 3, Manuscripta Math. 102 (2000), 505521.
[34]Sernesi E., Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334 (Springer, New York, 2006).
[35]Shioda T., On unirationality of supersingular surfaces, Math. Ann. 225 (1977), 155159.
[36]Silverman J., The arithmetic of elliptic curves (Springer, New York, 1986).
[37]Silverman J., Advanced topics in the arithmetic of elliptic curves (Springer, New York, 1994).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 54 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.