Skip to main content

The volume of singular Kähler–Einstein Fano varieties

  • Yuchen Liu (a1)

We show that the anti-canonical volume of an $n$ -dimensional Kähler–Einstein $\mathbb{Q}$ -Fano variety is bounded from above by certain invariants of the local singularities, namely $\operatorname{lct}^{n}\cdot \operatorname{mult}$ for ideals and the normalized volume function for real valuations. This refines a recent result by Fujita. As an application, we get sharp volume upper bounds for Kähler–Einstein Fano varieties with quotient singularities. Based on very recent results by Li and the author, we show that a Fano manifold is K-semistable if and only if a de Fernex–Ein–Mustaţă type inequality holds on its affine cone.

Hide All
[Bat81] Batyrev, V. V., Toric Fano threefolds , Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 704717; 927 (Russian).
[Ber16] Berman, R., K-polystability of ℚ-Fano varieties admitting Kähler–Einstein metrics , Invent. Math. 203 (2016), 9731025.
[BB11] Berman, R. and Berndtsson, B., The projective space has maximal volume among all toric Kähler–Einstein manifolds, Preprint (2011), arXiv:1112.4445.
[BB17] Berman, R. and Berndtsson, B., The volume of Kähler–Einstein Fano varieties and convex bodies , J. Reine Angew. Math. 723 (2017), 127152.
[BBJ15] Berman, R., Boucksom, S. and Jonsson, M., A variational approach to the Yau–Tian–Donaldson conjecture, Preprint (2015), arXiv:1509.04561.
[BBEGZ11] Berman, R., Boucksom, S., Eyssidieux, P., Guedj, V. and Zeriahi, A., Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math., to appear. Preprint (2011), arXiv:1111.7158.
[Blu18] Blum, H., Existence of valuations with smallest normalized volume , Compos. Math. 154 (2018), 820849.
[BC11] Boucksom, S. and Chen, H., Okounkov bodies of filtered linear series , Compos. Math. 147 (2011), 12051229.
[BdFFU15] Boucksom, S., de Fernex, T., Favre, C. and Urbinati, S., Valuation spaces and multiplier ideals on singular varieties , in Recent advances in algebraic geometry, London Mathematical Society Lecture Note Series, vol. 417 (Cambridge University Press, Cambridge, 2015), 2951.
[BFJ14] Boucksom, S., Favre, C. and Jonsson, M., A refinement of Izumi’s theorem , in Valuation theory in interaction, EMS Series of Congress Reports (European Mathematical Society, Zürich, 2014), 5581.
[BHJ17] Boucksom, S., Hisamoto, T. and Jonsson, M., Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs , Ann. Inst. Fourier (Grenoble) 67 (2017), 743841.
[BKMS15] Boucksom, S., Küronya, A., Maclean, C. and Szemberg, T., Vanishing sequences and Okounkov bodies , Math. Ann. 361 (2015), 811834.
[Cam92] Campana, F., Connexité rationnelle des variétés de Fano , Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 539545 (French).
[Che08] Cheltsov, I., Log canonical thresholds of del Pezzo surfaces , Geom. Funct. Anal. 18 (2008), 11181144.
[CK14] Cheltsov, I. and Kosta, D., Computing 𝛼-invariants of singular del Pezzo surfaces , J. Geom. Anal. 24 (2014), 798842.
[Cut13] Cutkosky, S. D., Multiplicities associated to graded families of ideals , Algebra Number Theory 7 (2013), 20592083.
[dFEM03] de Fernex, T., Ein, L. and Mustaţă, M., Bounds for log canonical thresholds with applications to birational rigidity , Math. Res. Lett. 10 (2003), 219236.
[dFEM04] de Fernex, T., Ein, L. and Mustaţă, M., Multiplicities and log canonical threshold , J. Algebraic Geom. 13 (2004), 603615.
[dFEM11] de Fernex, T., Ein, L. and Mustaţă, M., Log canonical thresholds on varieties with bounded singularities , in Classification of algebraic varieties, EMS Series of Congress Reports (European Mathematical Society, Zürich, 2011), 221257.
[dFKL07] de Fernex, T., Küronya, A. and Lazarsfeld, R., Higher cohomology of divisors on a projective variety , Math. Ann. 337 (2007), 443455.
[dFM15] de Fernex, T. and Mustaţă, M., The volume of a set of arcs on a variety , Rev. Roumaine Math. Pures Appl. 60 (2015), 375401.
[Din88] Ding, W.-Y., Remarks on the existence problem of positive Kähler–Einstein metrics , Math. Ann. 282 (1988), 463471.
[DT92] Ding, W. Y. and Tian, G., Kähler–Einstein metrics and the generalized Futaki invariant , Invent. Math. 110 (1992), 315335.
[Dol82] Dolgachev, I., Weighted projective varieties , in Group actions and vector fields (Vancouver, B.C., 1981), Lecture Notes in Mathematics, vol. 956 (Springer, Berlin, 1982), 3471.
[Don02] Donaldson, S., Scalar curvature and stability of toric varieties , J. Differential Geom. 62 (2002), 289349.
[ELS03] Ein, L., Lazarsfeld, R. and Smith, K. E., Uniform approximation of Abhyankar valuation ideals in smooth function fields , Amer. J. Math. 125 (2003), 409440.
[Fuj15] Fujita, K., Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Amer. J. Math., to appear. Preprint (2015), arXiv:1508.04578.
[Fuj16] Fujita, K., A valuative criterion for uniform K-stability of ℚ-Fano varieties, J. Reine Angew. Math., to appear. Preprint (2016), arXiv:1602.00901.
[GK07] Ghigi, A. and Kollár, J., Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres , Comment. Math. Helv. 82 (2007), 877902.
[Ish04] Ishii, S., Extremal functions and prime blow-ups , Comm. Algebra 32 (2004), 819827.
[Izu85] Izumi, S., A measure of integrity for local analytic algebras , Publ. Res. Inst. Math. Sci. 21 (1985), 719735.
[Jef97] Jeffres, T. D., Singular set of some Kähler orbifolds , Trans. Amer. Math. Soc. 349 (1997), 19611971.
[JM12] Jonsson, M. and Mustaţă, M., Valuations and asymptotic invariants for sequences of ideals , Ann. Inst. Fourier (Grenoble) 62 (2012), 21452209.
[Kol95] Kollár, J., Shafarevich maps and automorphic forms, Porter Lectures (Princeton University Press, Princeton, NJ, 1995).
[Kol96] Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 32 (Springer, Berlin, 1996).
[KMM92] Kollár, J., Miyaoka, Y. and Mori, S., Rational connectedness and boundedness of Fano manifolds , J. Differential Geom. 36 (1992), 765779.
[KM98] Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).
[Laz04] Lazarsfeld, R., Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 48 (Springer, Berlin, 2004).
[LM09] Lazarsfeld, R. and Mustaţă, M., Convex bodies associated to linear series , Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 783835.
[Li15] Li, C., Minimizing normalized volumes of valuations, Math. Z., to appear. Preprint (2015),arXiv:1511.08164.
[Li17] Li, C., K-semistability is equivariant volume minimization , Duke Math. J. 166 (2017), 31473218.
[LL16] Li, C. and Liu, Y., Kähler–Einstein metrics and volume minimizations, Adv. Math., to appear. Preprint (2016), arXiv:1602.05094.
[LX14] Li, C. and Xu, C., Special test configuration and K-stability of Fano varieties , Ann. of Math. (2) 180 (2014), 197232.
[LX16] Li, C. and Xu, C., Stability of valuations and Kollár components, Preprint (2016),arXiv:1604.05398.
[LZ16] Liu, Y. and Zhuang, Z., Characterization of projective spaces by Seshadri constants, Math. Z., to appear. Preprint (2016), arXiv:1607.05743.
[MM93] Mabuchi, T. and Mukai, S., Stability and Einstein–Kähler metric of a quartic del Pezzo surface , in Einstein metrics and Yang-Mills connections (Sanda, 1990), Lecture Notes in Pure and Applied Mathematics, vol. 145 (Dekker, New York, 1993).
[Mol97] Molien, T., Über die Invarianten der linearen Substitutionsgruppe , Sitzungsber. König. Preuss. Akad. Wiss (1897), 11521156.
[Mus02] Mustaţă, M., On multiplicities of graded sequences of ideals , J. Algebra 256 (2002), 229249.
[OSS16] Odaka, Y., Spotti, C. and Sun, S., Compact moduli spaces of Del Pezzo surfaces and Kähler–Einstein metrics , J. Differential Geom. 102 (2016), 127172.
[Ram73] Ramanujam, C. P., On a geometric interpretation of multiplicity , Invent. Math. 22 (1973/74), 6367.
[Ree89] Rees, D., Izumi’s theorem , in Commutative algebra (Berkeley, CA, 1987), Mathematical Sciences Research Institute Publications, vol. 15 (Springer, New York, 1989), 407416.
[Shi10] Shi, Y., On the 𝛼-invariants of cubic surfaces with Eckardt points , Adv. Math. 225 (2010), 12851307.
[Tia90] Tian, G., On Calabi’s conjecture for complex surfaces with positive first Chern class , Invent. Math. 101 (1990), 101172.
[Tia97] Tian, G., Kähler–Einstein metrics with positive scalar curvature , Invent. Math. 130 (1997), 137.
[WN12] Witt Nyström, D., Test configurations and Okounkov bodies , Compos. Math. 148 (2012), 17361756.
[Won13] Won, J., Slope of a del Pezzo surface with du Val singularities , Bull. Lond. Math. Soc. 45 (2013), 402410.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed