Skip to main content
×
Home
    • Aa
    • Aa

Equality of pressures for rational functions

  • FELIKS PRZYTYCKI (a1), JUAN RIVERA-LETELIER (a2) and STANISLAV SMIRNOV (a3)
Abstract

We prove that for all rational functions f on the Riemann sphere and potential $-t\ln|f'|, t\ge 0$ all the notions of pressure introduced in Przytycki (Proc. Amer. Math. Soc.351(5) (1999), 2081–2099) coincide. In particular, we get a new simple proof of the equality between the hyperbolic Hausdorff dimension and the minimal exponent of conformal measure on a Julia set. We prove that these pressures are equal to the pressure defined with the use of periodic orbits under an assumption that there are not many periodic orbits with Lyapunov exponent close to 1 moving close together, in particular under the Topological Collet–Eckmann condition. In Appendix A, we discuss the case t < 0.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax