Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Taylor, Samuel J. and Tiozzo, Giulio 2016. Random Extensions of Free Groups and Surface Groups are Hyperbolic. International Mathematics Research Notices, Vol. 2016, Issue. 1, p. 294.

    Girko, V. L. and Vladimirova, A. I. 2009. Spectral analysis of stochastic recurrence systems of growing dimension under G-condition. Canonical equation K 91. Random Operators and Stochastic Equations, Vol. 17, Issue. 3,

    Bourgain, Jean and Gamburd, Alex 2008. Random walks and expansion in. Comptes Rendus Mathematique, Vol. 346, Issue. 11-12, p. 619.

    Furman, Alex 2002.

    Barbot, Thierry 2001. Flag structures on Seifert manifolds. Geometry & Topology, Vol. 5, Issue. 1, p. 227.

    Cowling, Michael and Dorofaeff, Brian 1997. Random subgroups of Lie groups. Rendiconti del Seminario Matematico e Fisico di Milano, Vol. 67, Issue. 1, p. 95.

  • Ergodic Theory and Dynamical Systems, Volume 10, Issue 3
  • September 1990, pp. 483-512

Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire

  • Yves Guivarc'h (a1)
  • DOI:
  • Published online: 01 September 2008

Using the asymptotic properties of products of random matrices we study some properties of the subgroups of the linear group. These properties are centered around the theorem of J. Tits giving the existence of free subgroups in linear groups.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3]J. Cohen , H. Kesten & C. Newman , eds., Random matrices and applications. Contemp. Math. Amer. Math. Soc. 50 (1986).

[12]Y. Guivarc'h & A. Raugi . Propriétés de contraction d'un semi–groupe de matrices inversibles. Israël J. Math. 65 (2) (1989), 165196.

[18]G. A. Margulis . Arithméticity of the irreductible lattices in the semi–simple groups of rank greater than one. Invent. Math. 76 (1984), 93120.

[20]C. C. Moore . Amenable subgroups of semi–simple groups and proximal flows. Israël J. Math. 34 (1979), 121138.

[21]M. S. Raghunathan . A proof of Oseledet multiplicative theorem. Israël J. Math. 32 (1979) 356362.

[23]J. Tits . Free subgroups in linear groups. J. of Algebra 20 (1972), 250270.

[26]R. Zimmer . Ergodic theory and semi–simple groups. Birkhauser: 1984.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *