Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 11
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    French, Jason E. and Blake, David F. 2016. Discovery of Naturally Etched Fission Tracks and Alpha-Recoil Tracks in Submarine Glasses: Reevaluation of a Putative Biosignature for Earth and Mars. International Journal of Geophysics, Vol. 2016, p. 1.


    Nikitczuk, Matthew P.C. Schmidt, Mariek E. and Flemming, Roberta L. 2016. Candidate microbial ichnofossils in continental basaltic tuffs of central Oregon, USA: Expanding the record of endolithic microborings. Geological Society of America Bulletin, Vol. 128, Issue. 7-8, p. 1270.


    McLoughlin, Nicola and Grosch, Eugene G. 2015. A Hierarchical System for Evaluating the Biogenicity of Metavolcanic- and Ultramafic-Hosted Microalteration Textures in the Search for Extraterrestrial Life. Astrobiology, Vol. 15, Issue. 10, p. 901.


    Antony, Chakkiath Paul Shimpi, Gaurav G. Cockell, Charles S. Patole, Milind S. and Shouche, Yogesh S. 2014. Molecular Characterization of Prokaryotic Communities Associated with Lonar Crater Basalts. Geomicrobiology Journal, Vol. 31, Issue. 6, p. 519.


    Grosch, Eugene G. McLoughlin, Nicola Lanari, Pierre Erambert, Muriel and Vidal, Olivier 2014. Microscale Mapping of Alteration Conditions and Potential Biosignatures in Basaltic-Ultramafic Rocks on Early Earth and Beyond. Astrobiology, Vol. 14, Issue. 3, p. 216.


    Cousins, C.R. Crawford, I.A. Carrivick, J.L. Gunn, M. Harris, J. Kee, T.P. Karlsson, M. Carmody, L. Cockell, C. Herschy, B. and Joy, K.H. 2013. Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. Journal of Volcanology and Geothermal Research, Vol. 256, p. 61.


    Fisk, M. and McLoughlin, N. 2013. Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere, Vol. 9, Issue. 2, p. 317.


    McMahon, S. Parnell, J. Ponicka, J. Hole, M. and Boyce, A. 2013. The habitability of vesicles in martian basalt. Astronomy & Geophysics, Vol. 54, Issue. 1, p. 1.17.


    Richardson, C. Doc Hinman, Nancy W. and Scott, Jill R. 2013. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface. International Journal of Astrobiology, Vol. 12, Issue. 04, p. 357.


    Cousins, Claire R. and Crawford, Ian A. 2011. Volcano-Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology, Vol. 11, Issue. 7, p. 695.


    Cousins, C R 2011. Volcano-ice interaction: a haven for life on Mars?. Astronomy & Geophysics, Vol. 52, Issue. 1, p. 1.36.


    ×

A comparative study of endolithic microborings in basaltic lavas from a transitional subglacial–marine environment

  • Claire R. Cousins (a1), John L. Smellie (a2), Adrian P. Jones (a1) and Ian A. Crawford (a1)
  • DOI: http://dx.doi.org/10.1017/S1473550408004369
  • Published online: 01 January 2009
Abstract
Abstract

Subglacially erupted Neogene basaltic hyaloclastites in lava-fed deltas in Antarctica were found to contain putative endolithic microborings preserved in fresh glass along hydrous alteration boundaries. The location and existence over the past 6 Ma of these lava deltas has exposed them to successive interglacials and subsequent percolation of the hyaloclastite with marine water. A statistical study of the hyaloclastites has found that endolithic microborings are distinctly more abundant within samples that show evidence for marine alteration, compared with those that have remained in a strictly freshwater (glacial) environment. Additionally, correlation between elevation and the abundance of microborings shows endolithic activity to be more prolific within lower elevation samples, where the hyaloclastites were influenced by marine fluids. Our study strongly suggests that endolithic microborings form more readily in marine-influenced, rather than freshwater environments. Indeed, marine fluids may be a necessary precondition for the microbial activity responsible. Thus, we suggest that the chemistry and origin of alteration fluids are controlling factors on the formation of endolithic microborings in basaltic glass. The study also contributes to the understanding of how endolithic microborings could be used as a biosignature on Mars, where basaltic lavas and aqueous alteration are known to have existed in the past.

Copyright
Corresponding author
e-mail: c.cousins@ucl.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.G. Chapman (1994). Evidence, age, and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus 109, 393406.

M.G. Chapman & K.L. Tanaka (2001). Interior trough deposits on Mars: Subice volcanoes? J. Geophy. Res. 106, 10 08710 100.

H.G.M. Edwards , N.C. Russell & D.D. Wynn-Williams (1997). Fourier Transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J. Raman Spectros. 28, 685690.

M.R. Fisk & S.J. Giovannoni (1999b). Sources of nutrients and energy for a deep biosphere on Mars. J. Geophy. Res. 104, 11 80511 815.

M.R. Fisk , S.J. Giovannoni & I.H. Thorseth (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281, 978979.

M.R. Fisk , R. Popa , O.U. Mason , M.C. Storrie-Lombardi & E.P. Vicenzi (2006). Iron-magnesium silicate bioweathering on earth (and Mars?). Astrobiology 6(1), 4868.

M.R. Fisk , M.C. Storrie-Lombardi , S. Douglas , R. Popa , G. McDonald & C. Di Meo-Savoie (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosyst. 4, 2003GC000387.

E.I. Friedmann (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215, 10451053.

H. Furnes , N.R. Banerjee , K. Muehlenbachs & A. Kontinen (2005). Preservation of biosignatures in the metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambrian Res. 136(2), 125137.

H. Furnes , N.R. Banerjee , K. Muehlenbachs , H. Staudigel & M. de Wit (2004). Early life recorded in Archaean pillow lavas. Science 304, 578581.

H. Furnes , N.R. Banerjee , H. Staudigel , K. Muehlenbachs , N. McLoughlin , M. de Wit & M.V. Van Kranendonk (2007). Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156176.

H. Furnes , K. Muehlenbachs , O. Tumyr , T. Torsvik & C. Xenophontos (2001a). Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J. Geol. Soc. Lond. 158(1), 7584.

H. Furnes & H. Staudigel (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet. Sci. Lett. 166(3–4), 97103.

H. Furnes , H. Staudigel , I.H. Thorseth , T. Torsvik , K. Muehlenbachs & O. Tumyr (2001b). Bioalteration of basaltic glass in the oceanic crust. Geochem. Geophys. Geosyst. 2, 2000GC000150.

H. Furnes , I.H. Thorseth , T. Torsvik , K. Muehlenbachs , H. Staudigel & O. Tumyr (2002b). Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review. Special Publication 202: Volcano–Ice Interactions on Earth and Mars, eds J.L. Smellie & M.G. Chapman , pp. 407421. Geological Society of London, London.

G.J. Ghatan & J.W. Head III, (2002). Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J. Geophy. Res. 107 (E7), 5048, DOI:10.1029/2001JE001519.

J.S. Johnson & J.L. Smellie (2007). Zeolite compositions as proxies for eruptive paleoenvironment. Geochem. Geophys. Geosyst. 8, doi:10.1029/2006GC001450.

J.G. Jones (1969). Intraglacial volcanoes of the Laugarvatn region, south-west Iceland – I. Q. J. Geol. Soc. Lond. 124, 197211.

N. McLoughlin , M.D. Brasier , D. Wacey , O.R. Green & R.S. Perry (2007). On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7(1), 1026.

C.R. Omelon , W.H. Pollard & F.G. Ferris (2007). Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microbial Ecology 54, 740752.

F. Poulet , J.-P. Bibring , J.F. Mustard , A. Gendrin , N. Mangold , Y. Langevin , R.E. Arvidson , B. Gondet , C. Gomez & the Omega Team (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623627.

J.L. Smellie (2006). The relative importance of supraglacial versus subglacial meltwater escape in basaltic subglacial tuya eruptions: an important unresolved conundrum. Earth-Science Reviews 74, 241268.

J.L. Smellie , J.S. Johnson , W.C. McIntosh , R. Esser , M.T. Gudmundsson , M.J. Hambrey & B. van Wyk de Vries (2008). Six million years of glacial history recorded in the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr., Palaeoclimatol., Palaeoecol. 260, 122148.

J.L. Smellie , J.M. McArthur , W.C. McIntosh & R. Esser (2006). Late Neogene interglacial events in the James Ross Island region, northern Antarctic Peninsula, dated by Ar/Ar and Sr-isotope stratigraphy. Palaeogeogr., Palaeoclimatol., Palaeoecol. 242, 169187.

H. Staudigel , H. Furnes , N.R. Banerjee , Y. Dilek & K. Muehlenbachs (2006). Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16, 410.

H. Staudigel & H-U. Schmincke (1984). The Pliocene Seamount Series of La Palma/Canary Islands. J. Geophy. Res. 89, 11 19511 215.

M.C. Storrie-Lombardi & M. Fisk (2004). Elemental abundance distributions in sub-oceanic basalt glass: evidence of biogenic alteration. Geochem. Geophys. Geosys. 5, 1–15. Q10005, doi:10.1029/2004GC000755.

I.H. Thorseth , H. Furnes & M. Heldal (1992). The importance of microbiological activity in the alteration of natural basaltic glass. Geochim. Cosmochim. Acta 56(2), 845850.

I.H. Thorseth , H. Furnes & O. Tumyr (1995). Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem. Geol. 119(1–4), 139160.

I.H. Thorseth , R.B. Pederson & D.D. Christie (2003). Microbial alteration of 0–30 Ma seafloor and subseafloor basaltic glass from the Australian Antarctic Discord. Earth Planet. Sci. Lett. 215(1–2), 237247.

I.H. Thorseth , T. Torsvik , K. Torsvik , F.L. Daae , R.B. Pederson & the Keldysh-98 Scientific Party (2001). Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett. 194(1–2), 3137.

T. Torsvik , H. Furnes , K. Muehlenbachs , I.H. Thorseth & O. Tumyr (1998). Evidence for microbial activity at the glass–alteration interface in oceanic basalts. Earth Planet. Sci. Lett. 162(1–4), 165176.

A. W. Walton (2008). Microtubules in basaltic glass from Hawaii Scientific Drilling Project #2 phase 1 core and Hilina slope, Hawaii: evidence of the occurrence and behaviour of endolithic microorganisms. Geobiology 6, 351364.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: