Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-96qlp Total loading time: 0.577 Render date: 2022-12-03T10:09:53.045Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Detecting inactivated endospores in fluorescence microscopy using propidium monoazide

Published online by Cambridge University Press:  17 January 2012

Alexander Probst
Affiliation:
Department for Microbiology and Archaea Centre, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
Alexander Mahnert
Affiliation:
Department for Microbiology and Archaea Centre, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
Christina Weber
Affiliation:
Compliance – Advice and Services in Microbiology GmbH, Robert-Perthel-Straße 49, 50739 Cologne, Germany Deutsches Wollforschungsinstitut DWI, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Interactive Materials Research, Pauwelsstraße 8, 52056 Aachen, Germany
Klaus Haberer
Affiliation:
Compliance – Advice and Services in Microbiology GmbH, Robert-Perthel-Straße 49, 50739 Cologne, Germany
Christine Moissl-Eichinger*
Affiliation:
Department for Microbiology and Archaea Centre, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany

Abstract

The differentiation between living and dead bacterial endospores is crucial in many research areas of microbiology. The identification of inactivated, non-pathogenic Bacillus anthracis spores is one reason why improvement of decontamination protocols is so desirable. Another field interested in spore viability is planetary protection, a sub-discipline of astrobiology that estimates the bioburden of spacecraft prior to launch in order to avoid interplanetary cross-contamination. We developed a dedicated, rapid and cost-effective method for identifying bacterial endospores that have been inactivated and consequently show a compromised spore wall. This novel protocol is culture-independent and is based on fluorescence microscopy and propidium monoazide (PMA) as a fluorescent marker, which is suggested to bind to DNA of spores with compromised spore coat, cortex and membranes based on our results. Inactivated preparations (treated with wet heat, irradiation, ultracentrifugation) showed a significant increase in spores that were PMA stained in their core; moreover, Bacillus atrophaeus, Bacillus safensis and Geobacillus stearothermophilus seemed to be best suited for this technique, as the spore cores of all these endospores could be positively stained after inactivation. Lastly, we describe an additional counter-staining protocol and provide an example of the application of the coupled staining methods for planetary protection purposes. The introduction of this novel protocol is expected to provide an initial insight into the various possible future applications of PMA as a non-viability marker for spores in, for example, B. anthracis-related studies, food microbiology and astrobiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (2002). COSPAR/IAU Workshop on Planetary Protection. Committee on Space Research (COSPAR), International Council for Science, Paris, France (Amended 2011). http://cosparhq.cnes.fr/Scistr/PPPolicy%20%2824Mar2011%29.pdf.Google Scholar
Beaman, T.C., Pankratz, H.S. & Gerhardt, P. (1972). J. Bacteriol. 109, 11981209.Google Scholar
Bechtel, D.B. & Bulla, L.A. Jr. (1976). J. Bacteriol. 127, 14721481.Google Scholar
Blocher, J.C. & Busta, F.F. (1985). Appl. Environ. Microbiol. 50, 274279.Google Scholar
Boulos, L., Prevost, M., Barbeau, B., Coallier, J. & Desjardins, R. (1999). J. Microbiol. Methods 37, 7786.CrossRefGoogle Scholar
Coleman, W.H., Zhang, P., Li, Y.-Q. & Setlow, P. (2010). Lett. Appl. Microbiol. 50, 507514.CrossRefGoogle Scholar
Cook, A.M. & Brown, M.R.W. (1964). J. Pharm. Pharmacol. 16, 725732.CrossRefGoogle Scholar
Driks, A. (1999). Microbiol. Mol. Biol. Rev. 63, 120.Google Scholar
Fast, P.G. (1972). J. Invertebr. Pathol. 20, 139140.CrossRefGoogle Scholar
Foerster, H.F. & Foster, J.W. (1966). J. Bacteriol. 91, 11681177.Google Scholar
Ghosh, S. & Setlow, P. (2009). J. Bacteriol. 191, 17811797.Google Scholar
Kondo, M. & Foster, J.W. (1967). J. Gen. Microbiol. 47, 257271.CrossRefGoogle Scholar
La Duc, M., Dekas, A., Osman, S., Moissl, C., Newcombe, D. & Venkateswaran, K. (2007). Appl. Environ. Microbiol. 73, 26002611.CrossRefGoogle Scholar
LaFlamme, C., Verreault, D., Lavigne, S., Trudel, L., Ho, J. & Duchaine, C. (2005). Front. Biosci. 10, 16471653.CrossRefGoogle Scholar
Liu, H., Bergman, N.H., Thomason, B., Shallom, S., Hazen, A., Crossno, J., Rasko, D.A., Ravel, J., Read, T.D., Peterson, S.N., et al. (2004). J. Bacteriol. 186, 164178.CrossRefGoogle Scholar
Magge, A., Setlow, B., Cowan, A.E. & Setlow, P. (2009). J. Appl. Microbiol. 106, 814824.CrossRefGoogle Scholar
Mohapatra, B.R. & La Duc, M.T. (2011). Microbiol. Immunol., Epub ahead of print, doi: 10.1111/j.1348-0421.2011.00404.x.Google Scholar
Nicholson, W. L. & Setlow, P. (1990). Molecular biological methods for Bacillus, Sporulation Germination and outgrowth, pp. 391450.Google Scholar
Nocker, A., Cheung, C.Y. & Camper, A.K. (2006). J. Microbiol. Methods, 67, 310320.CrossRefGoogle Scholar
Nocker, A., Mazza, A., Masson, L., Camper, A.K. & Brousseau, R. (2009). J. Microbiol. Methods, 76, 253261.CrossRefGoogle Scholar
Nocker, A., Richter-Heitmann, T., Montijn, R., Schuren, F. & Kort, R. (2010). Int. Microbiol. 13, 5965.Google Scholar
Nocker, A., Sossa, K.E. & Camper, A.K. (2007a). J. Microbiol. Methods, 70, 252260.CrossRefGoogle Scholar
Nocker, A., Sossa-Fernandez, P., Burr, M.D. & Camper, A.K. (2007b). Appl. Environ. Microbiol. 73, 51115117.CrossRefGoogle Scholar
Preston, R.A. & Douthit, H.A. (1984). J. Gen. Microbiol. 130, 10411050.Google Scholar
Probst, A., Facius, R., Wirth, R. & Moissl-Eichinger, C. (2010). Appl. Environ. Microbiol. 76, 51485158.CrossRefGoogle Scholar
Probst, A., Facius, R., Wirth, R., Wolf, M. & Moissl-Eichinger, C. (2011). Appl. Environ. Microbiol. 77, 16281637.CrossRefGoogle Scholar
Puleo, J.R., Fields, N.D., Bergstrom, S.L., Oxborrow, G.S., Stabekis, P.D. & Koukol, R. (1977). Appl. Environ. Microbiol. 33, 379384.Google Scholar
Raso, J., Gongora-Nieto, M.M., Barbosa-Canovas, G.V. & Swanson, B.G. (1998). Int. J. Food Microbiol. 44, 125132.CrossRefGoogle Scholar
Rawsthorne, H., Dock, C.N. & Jaykus, L.A. (2009). Appl. Environ. Microbiol. 75, 29362939.CrossRefGoogle Scholar
Setlow, B., Loshon, C.A., Genest, P.C., Cowan, A.E., Setlow, C. & Setlow, P. (2002). J. Appl. Microbiol. 92, 362375.CrossRefGoogle Scholar
Smoot, L. & Pierson, M.D. (1982). J. Food Prot. 45, 8492.CrossRefGoogle Scholar
Turner, L., Ryu, W.S. & Berg, H.C. (2000). J. Bacteriol. 182, 27932801.CrossRefGoogle Scholar
Vasin, V.B. & Trofimov, V.I. (1995). Adv. Space Res. 15, 273276.CrossRefGoogle Scholar
Venkateswaran, K., Satomi, M., Chung, S., Kern, R., Koukol, R., Basic, C. & White, D. (2001). Syst. Appl. Microbiol. 24, 311320.CrossRefGoogle Scholar
Waring, M.J. (1965). J. Mol. Biol. 13, 269282.CrossRefGoogle Scholar
Wirth, R., Bellack, A., Bertl, M., Bilek, Y., Heimerl, T., Herzog, B., Leiner, M., Probst, A., Rachel, R., Sarbu, C., et al. (2011). Appl. Environ. Microbiol. 77, 15561562.CrossRefGoogle Scholar
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Detecting inactivated endospores in fluorescence microscopy using propidium monoazide
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Detecting inactivated endospores in fluorescence microscopy using propidium monoazide
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Detecting inactivated endospores in fluorescence microscopy using propidium monoazide
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *